skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Eiben, M. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. TolTEC is an upcoming millimeter-wave imaging polarimeter designed to fill the focal plane of the 50-m-diameter Large Millimeter Telescope (LMT). Combined with the LMT, TolTEC will offer high-angular-resolution (5–10 ) simultaneous, polarization-sensitive observations in three wavelength bands: 1.1, 1.4, and 2.0 mm. Additionally, TolTEC will feature mapping speeds greater than 2 deg2∕mJy2∕h , thus enabling wider surveys of large-scale structure, galaxy evolution, and star formation. These improvements are only possible through the integration of approximately 7000 low-noise, high-responsivity superconducting Lumped Element Kinetic Inductance Detectors. Utilizing three focal planes of detector arrays requires the design, fabrication, and characterization of a unique, large-scale cryogenic system. Based on thermal models and expected photon loading, the focal planes must have a base operational temperature below 150 mK. To achieve this base temperature, TolTEC utilizes two cryocoolers, a Cryomech pulse tube cooler and an Oxford Instruments dilution refrigerator, to establish four thermal stages: 45 K, 4 K, 1 K, and 100 mK. During the design phase, we developed an object-oriented Python code to model the heat loading on each stage as well as the thermal gradients throughout the system. This model has allowed us to improve thermal gradients in the system as well as locate areas of poor thermal conductivity prior to ending a cooldown. The results of our model versus measurements from our cooldowns will be presented along with a detailed overview of TolTEC’s cryogenic system. We anticipate TolTEC to be commissioned at the LMT by Spring 2020. 
    more » « less