Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.more » « less
-
A bstract Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ ± → ℓ ± γ ( ℓ = e, μ ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ ± → ℓ ± γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb − 1 , is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ B ( τ ± → μ ± γ ) ≤ 4 . 2 × 10 − 8 and $$ \mathcal{B} $$ B ( τ ± → e ± γ ) ≤ 5 . 6 × 10 − 8 , are set at 90% confidence level.more » « less
-
A bstract We measure the branching fractions and CP asymmetries for the singly Cabibbo-suppressed decays D 0 → π + π − η , D 0 → K + K − η , and D 0 → ϕη , using 980 fb − 1 of data from the Belle experiment at the KEKB e + e − collider. We obtain $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({D}^0\to {\pi}^{+}{\pi}^{-}\eta \right)=\left[1.22\pm 0.02\left(\mathrm{stat}\right)\pm 0.02\left(\mathrm{syst}\right)\pm 0.03\left({\mathcal{B}}_{\mathrm{ref}}\right)\right]\times {10}^{-3},\\ {}\mathcal{B}\left({D}^0\to {K}^{+}{K}^{-}\eta \right)=\left[{1.80}_{-0.06}^{+0.07}\left(\mathrm{stat}\right)\pm 0.04\left(\mathrm{syst}\right)\pm 0.05\left({\mathcal{B}}_{\mathrm{ref}}\right)\right]\times {10}^{-4},\\ {}\mathcal{B}\left({D}^0\to \phi \eta \right)=\left[1.84\pm 0.09\left(\mathrm{stat}\right)\pm 0.06\left(\mathrm{syst}\right)\pm 0.05\left({\mathcal{B}}_{\mathrm{ref}}\right)\right]\times {10}^{-4},\end{array}} $$ B D 0 → π + π − η = 1.22 ± 0.02 stat ± 0.02 syst ± 0.03 B ref × 10 − 3 , B D 0 → K + K − η = 1.80 − 0.06 + 0.07 stat ± 0.04 syst ± 0.05 B ref × 10 − 4 , B D 0 → ϕη = 1.84 ± 0.09 stat ± 0.06 syst ± 0.05 B ref × 10 − 4 , where the third uncertainty ( $$ \mathcal{B} $$ B ref ) is from the uncertainty in the branching fraction of the reference mode D 0 → K − π + η . The color-suppressed decay D 0 → ϕη is observed for the first time, with very high significance. The results for the CP asymmetries are $$ {\displaystyle \begin{array}{c}{A}_{CP}\left({D}^0\ {\pi}^{+}{\pi}^{-}\eta \right)=\left[0.9\pm 1.2\left(\mathrm{stat}\right)\pm 0.5\left(\mathrm{syst}\right)\right]\%,\\ {}{A}_{CP}\left({D}^0\to {K}^{+}{K}^{-}\eta \right)=\left[-1.4\pm 3.3\left(\mathrm{stat}\right)\pm 1.1\left(\mathrm{syst}\right)\right]\%,\\ {} ACP\ \left({D}^0\to \phi \eta \right)=\left[-1.9\pm 4.4\left(\mathrm{stat}\right)\pm 0.6\left(\mathrm{syst}\right)\right]\%.\end{array}} $$ A CP D 0 π + π − η = 0.9 ± 1.2 stat ± 0.5 syst % , A CP D 0 → K + K − η = − 1.4 ± 3.3 stat ± 1.1 syst % , ACP D 0 → ϕη = − 1.9 ± 4.4 stat ± 0.6 syst % . The results for D 0 → π + π − η are a significant improvement over previous results. The branching fraction and A CP results for D 0 → K + K − η , and the ACP result for D 0 → ϕη , are the first such measurements. No evidence for CP violation is found in any of these decays.more » « less