skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eisner, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a quantization of coarse spaces and uniform Roe algebras. The objects are based on the quantum relations introduced by N. Weaver and require the choice of a represented von Neumann algebra. In the case of the diagonal inclusion ell_infty(X) subset B(ell_2(X)), they reduce to the usual constructions. Quantum metric spaces furnish natural examples parallel to the classical setting, but we provide other examples that are not inspired by metric considerations, including the new class of support expansion C*-algebras. We also work out the basic theory for maps between quantum coarse spaces and their consequences for quantum uniform Roe algebras. 
    more » « less