skip to main content

Search for: All records

Creators/Authors contains: "El-Awady, Jaafar A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2024
  2. Abstract First principles calculations of the energies and relaxation of unreconstructed low-index surfaces, i.e. (001), (011) and (111) surfaces, in NiCoCr and NiFe X ( X = Cu, Co or Cr) equiatomic multi-principal element alloys (MPEAs) are presented. The calculations were conducted for 12-layer slabs represented by special quasi-random supercells using the projector augmented wave method within the generalized gradient approximation. While experimental predictions are unavailable for comparison, the calculated surface energies agree fairly well with those from thermodynamic modeling and a bond-cutting model. In addition, the calculations unveil an important surface structure, namely, that the topmost surface layer is in contraction except for the (001) surface of NiFeCr alloy, the next layer below is in extension, and the bulk spacing is gradually recovered from the subsequent layers down. Additionally, the surface contraction is the most pronounced on the (011) plane, being about 4%–10% relative to the bulk spacings. The results presented here can provide an understanding of surface-controlled phenomena such as corrosion, catalytic activities and fracture properties in these equiatomic MPEAs.
  3. Fatigue damage in metals manifests itself as irreversible dislocation motion followed by crack initiation and propagation. Characterizing the transition from a crack-free to a cracked metal remains one of the most challenging problems in fatigue. Persistent slip bands (PSBs) form in metals during cyclic loading and are one of the most important aspects of this transition. We used in situ microfatigue experiments to investigate PSB formation and evolution mechanisms, and we discovered that PSBs are prevalent at the micrometer scale. Dislocation accumulation rates at this scale are smaller than those in bulk samples, which delays PSB nucleation. Our results suggest the need to refine PSB and crack-initiation models in metals to account for gradual and heterogeneous evolution. These findings also connect micrometer-scale deformation mechanisms with fatigue failure at the bulk scale in metals.