skip to main content

Search for: All records

Creators/Authors contains: "El-Gohary, Nora"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Free, publicly-accessible full text available March 1, 2024
  3. Free, publicly-accessible full text available January 1, 2024
  4. Issa, R. (Ed.)
    Automated checking of the compliance of building information modeling (BIM)-based building designs with relevant codes and regulations requires bridging the semantic gap between the Industry Foundation Classes (IFC) schema and the natural language. In most of the existing automated compliance checking (ACC) systems, the integration of the IFC schema and natural language is realized through hardcoding or predefined rules, ontologies, or dictionaries. These methods require intensive manual engineering effort and are often rigid and difficult to generalize. There is, thus, a need for an automated and meanwhile flexible and generalizable information integration method. To address this need, this paper leverages transformer-based language models to learn the semantic representations of concepts in the building information models (BIMs) and regulatory documents. An automated IFC-regulatory information integration approach based on these learned semantic representations is proposed. The preliminary experimental results show that the proposed approach achieved promising performance—an accuracy of 80%—on integrating IFC and regulatory concepts.
  5. To facilitate a better understanding of building codes, the visualization of the embedded structures of the provisions and requirements of the codes is needed. Existing research efforts in building code compliance checking mostly do not purposefully represent building codes in formats that facilitate human understanding and interaction with the codes, such as XML and hypertext (text with links to other text). Visual programming commonly represents building codes more visually as flowcharts. However, flowcharts are static, and the generation of flowcharts is still manual. To address this lack of interactive visual representation of building code requirement structures, this paper proposes an automated building code structure extraction and visualization method for visualizing building code contents in a way that clearly shows the inter-connections between requirements and allows intuitive user interaction. In this method, to extract the chapter-section-subsection hierarchical structure and cross-reference structure, a new extraction method named Building Code Network Generator (BCNG) is proposed to automatically generate an interactive visualization using a directed network. The performance of the proposed BCNG was empirically tested on Chapters 5 and 10 of the International Building Code 2015, with a resulting precision, recall, and F1-score of 99.4%, 96.3%, and 97.8%, respectively. In addition, the extracted hierarchicalmore »and cross-reference structures were displayed using an open-source network visualization tool to facilitate human understanding and interactions with the building code requirements in automated compliance checking systems.« less