skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "ElSayed, K.A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Heuristics are essential for addressing the complexities of engineering design processes. The goodness of heuristics is context-dependent. Appropriately tailored heuristics can enable designers to find good solutions efficiently, and inappropriate heuristics can result in cognitive biases and inferior design outcomes. While there have been several efforts at understanding which heuristics are used by designers, there is a lack of normative understanding about when different heuristics are suitable. Towards addressing this gap, this paper presents a reinforcement learning-based approach to evaluate the goodness of heuristics for three sub-problems commonly faced by designers while carrying out design under resource constraints: (i) learning the mapping between the design space and the performance space, (ii) sequential information acquisition in design, and (iii) decision to stop information acquisition. Using a multi-armed bandit formulation and simulation studies, we learn the heuristics that are suitable for these sub-problems under different resource constraints and problem complexities. The results of our simulation study indicate that the proposed reinforcement learning-based approach can be effective for determining the quality of heuristics for different sub-problems, and how the effectiveness of the heuristics changes as a function of the designer's preference (e.g., performance versus cost), the complexity of the problem, and the resources available. 
    more » « less