skip to main content

Search for: All records

Creators/Authors contains: "Eldar, Yonina C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Hybrid beamforming (HBF) is a key enabler for millimeter-wave (mmWave) communications systems, but HBF optimizations are often non-convex and of large dimension. In this paper, we propose an efficient deep unfolding-based HBF scheme, referred to as ManNet-HBF, that approximately maximizes the system spectral efficiency (SE). It first factorizes the optimal digital beamformer into analog and digital terms, and then reformulates the resultant matrix factorization problem as an equivalent maximum-likelihood problem, whose analog beamforming solution is vectorized and estimated efficiently with ManNet, a lightweight deep neural network. Numerical results verify that the proposed ManNet-HBF approach has near-optimal performance comparable to or better than conventional model-based counterparts, with very low complexity and a fast run time. For example, in a simulation with 128 transmit antennas, it attains 98.62% the SE of the Riemannian manifold scheme but 13250 times faster. 
    more » « less