This paper describes the
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to runCombine and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details ofCombine . However, the online documentation referenced within this paper provides an up-to-date and complete user guide.Free, publicly-accessible full text available December 1, 2025 -
Abstract A search is reported for charge-parity
violation in$$CP$$ decays, using data collected in proton–proton collisions at$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$$\,\text {fb}^{-1}$$ and$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ . The$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry in$$CP$$ is measured to be$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ asymmetry in the$$CP$$ decay. This is the first$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.$$CP$$ Free, publicly-accessible full text available December 1, 2025 -
Abstract The CERN LHC provided proton and heavy ion collisions during its Run 2 operation period from 2015 to 2018. Proton-proton collisions reached a peak instantaneous luminosity of 2.1× 1034cm-2s-1, twice the initial design value, at √(
s )=13 TeV. The CMS experiment records a subset of the collisions for further processing as part of its online selection of data for physics analyses, using a two-level trigger system: the Level-1 trigger, implemented in custom-designed electronics, and the high-level trigger, a streamlined version of the offline reconstruction software running on a large computer farm. This paper presents the performance of the CMS high-level trigger system during LHC Run 2 for physics objects, such as leptons, jets, and missing transverse momentum, which meet the broad needs of the CMS physics program and the challenge of the evolving LHC and detector conditions. Sophisticated algorithms that were originally used in offline reconstruction were deployed online. Highlights include a machine-learning b tagging algorithm and a reconstruction algorithm for tau leptons that decay hadronically.Free, publicly-accessible full text available November 1, 2025 -
Free, publicly-accessible full text available November 1, 2025
-
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity ofof proton-proton collision data at, collected in 2016–2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large ’t Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available November 1, 2025 -
The first search for theboson decay toat the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of thetobranching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available October 1, 2025 -
A bstract The effective lifetime of the
meson in the decay$$ {\textrm{B}}_{\textrm{s}}^0 $$ is measured using data collected during 2016–2018 with the CMS detector in$$ {\textrm{B}}_{\textrm{s}}^0\to \textrm{J}/{\uppsi \textrm{K}}_{\textrm{S}}^0 $$ = 13 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 140 fb$$ \sqrt{s} $$ − 1. The effective lifetime is determined by performing a two-dimensional unbinned maximum likelihood fit to the meson invariant mass and proper decay time distributions. The resulting value of 1.59 ± 0.07(stat) ± 0.03(syst) ps is the most precise measurement to date and is in good agreement with the expected value.$$ {\textrm{B}}_{\textrm{s}}^0 $$ Free, publicly-accessible full text available October 1, 2025 -
A search is described for the production of a pair of bottom-type vectorlike quarks (VLQs) with mass greater than 1000 GeV. EachVLQ decays into aquark and a Higgs boson, aquark and aboson, or aquark and aboson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from aboson decay. The products of theboson decay and of the hadronicorboson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity ofcollected in proton-proton collisions atwith the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on theVLQ mass at the 95% confidence level. These depend on theVLQ branching fractions and are 1570 and 1540 GeV for 100%and 100%, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available September 1, 2025 -
Abstract The operation and performance of the Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) are presented, based on data collected in pp collisions at √
s =13 TeV at the CERN LHC, in the years from 2015 to 2018 (LHC Run 2), corresponding to an integrated luminosity of 151 fb-1. The CMS ECAL is a scintillating lead-tungstate crystal calorimeter, with a silicon strip preshower detector in the forward region that provides precise measurements of the energy and the time-of-arrival of electrons and photons. The successful operation of the ECAL is crucial for a broad range of physics goals, ranging from observing the Higgs boson and measuring its properties, to other standard model measurements and searches for new phenomena. Precise calibration, alignment, and monitoring of the ECAL response are important ingredients to achieve these goals. To face the challenges posed by the higher luminosity, which characterized the operation of the LHC in Run 2, the procedures established during the 2011–2012 run of the LHC have been revisited and new methods have been developed for the energy measurement and for the ECAL calibration. The energy resolution of the calorimeter, for electrons from Z boson decays reaching the ECAL without significant loss of energy by bremsstrahlung, was better than 1.8%, 3.0%, and 4.5% in the |η | intervals [0.0,0.8], [0.8,1.5], [1.5, 2.5], respectively. This resulting performance is similar to that achieved during Run 1 in 2011–2012, in spite of the more severe running conditions.Free, publicly-accessible full text available September 1, 2025 -
Abstract The performance of muon tracking, identification, triggering, momentum resolution, and momentum scale has been studied with the CMS detector at the LHC using data collected at √(
s NN) = 5.02 TeV in proton-proton (pp) and lead-lead (PbPb) collisions in 2017 and 2018, respectively, and at √(s NN) = 8.16 TeV in proton-lead (pPb) collisions in 2016. Muon efficiencies, momentum resolutions, and momentum scales are compared by focusing on how the muon reconstruction performance varies from relatively small occupancy pp collisions to the larger occupancies of pPb collisions and, finally, to the highest track multiplicity PbPb collisions. We find the efficiencies of muon tracking, identification, and triggering to be above 90% throughout most of the track multiplicity range. The momentum resolution and scale are unaffected by the detector occupancy. The excellent muon reconstruction of the CMS detector enables precision studies across all available collision systems.Free, publicly-accessible full text available September 1, 2025