# Search for:All records

Creators/Authors contains: "Elhamifar, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

1. We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of low-dimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking advantage of the side information. To do so, we use the self-expressive property of the data, searching for a sparse representation of each column of matrix as a combination of a few other columns. More specifically, we propose a factorization of the data matrix as the product of side information matrices with an unknown interaction matrix, under which each column of the data matrix can be reconstructed using a sparse combination of other columns. As our proposed optimization, searching for missing entries and sparse coefficients, is non-convex and NP-hard, we propose a lifting framework, where we couple sparse coefficients and missing values and define an equivalent optimization that is amenable to convex relaxation. We also propose a fast implementation of our convex framework using a Linearized Alternating Direction Method. By extensive experiments on both synthetic and real data, and, in particular, by studying the problem of multi-label learning, we demonstrate that our method outperforms existing techniques in both low-rank and high-rank data regimes.
more » « less
2. We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of low-dimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking advantage of the side information. To do so, we use the self-expressive property of the data, searching for a sparse representation of each column of matrix as a combination of a few other columns. More specifically, we propose a factorization of the data matrix as the product of side information matrices with an unknown interaction matrix, under which each column of the data matrix can be reconstructed using a sparse combination of other columns. As our proposed optimization, searching for missing entries and sparse coefficients, is non-convex and NP-hard, we propose a lifting framework, where we couple sparse coefficients and missing values and define an equivalent optimization that is amenable to convex relaxation. We also propose a fast implementation of our convex framework using a Linearized Alternating Direction Method. By extensive experiments on both synthetic and real data, and, in particular, by studying the problem of multi-label learning, we demonstrate that our method outperforms existing techniques in both low-rank and high-rank data regimes
more » « less
3. Subset selection, which is the task of finding a small subset of representative items from a large ground set, finds numerous applications in different areas. Sequential data, including time-series and ordered data, contain important structural relation- ships among items, imposed by underlying dynamic models of data, that should play a vital role in the selection of representatives. However, nearly all existing subset selection techniques ignore underlying dynamics of data and treat items independently, leading to incompatible sets of representatives. In this paper, we develop a new framework for sequential subset selection that finds a set of represen- tatives compatible with the dynamic models of data. To do so, we equip items with transition dynamic models and pose the problem as an integer binary optimization over assignments of sequential items to representatives, that leads to high encoding, diversity and transition potentials. Our formulation generalizes the well-known facility location objective to deal with sequential data, incorporating transition dynamics among facilities. As the proposed formulation is non-convex, we derive a max-sum message passing algorithm to solve the problem efficiently. Experiments on synthetic and real data, including instructional video summarization, show that our sequential subset selection framework not only achieves better encoding and diversity than the state of the art, but also successfully incorporates dynamics of data, leading to compatible representatives.
more » « less
4. We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer binary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approach based on unconstrained submodular optimization and also propose an efficient convex relaxation. We show that, under appropriate conditions, the solution of our proposed convex algorithm achieves the global optimal solution of the non-convex problem. Our results also address the conventional problem of subset selection in the offline setting, as a special case. By extensive experiments on the problem of video summarization, we demonstrate that our proposed online subset selection algorithms perform well on real data, capturing diverse representative events in videos, while they obtain objective function values close to the offline setting.
more » « less
5. Subset selection, which is the task of finding a small subset of representative items from a large ground set, finds numerous applications in different areas. Sequential data, including time-series and ordered data, contain important structural relationships among items, imposed by underlying dynamic models of data, that should play a vital role in the selection of representatives. However, nearly all existing subset selection techniques ignore underlying dynamics of data and treat items independently, leading to incompatible sets of representatives. In this paper, we develop a new framework for sequential subset selection that finds a set of representatives compatible with the dynamic models of data. To do so, we equip items with transition dynamic models and pose the problem as an integer binary optimization over assignments of sequential items to representatives, that leads to high encoding, diversity and transition potentials. Our formulation generalizes the well-known facility location objective to deal with sequential data, incorporating transition dynamics among facilities. As the proposed formulation is non-convex, we derive a max-sum message passing algorithm to solve the problem efficiently. Experiments on synthetic and real data, including instructional video summarization, show that our sequential subset selection framework not only achieves better encoding and diversity than the state of the art, but also successfully incorporates dynamics of data, leading to compatible representatives.
more » « less