skip to main content

Search for: All records

Creators/Authors contains: "Elkin, Magdalyn E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Serology and molecular tests are the two most commonly used methods for rapid COVID-19 infection testing. The two types of tests have different mechanisms to detect infection, by measuring the presence of viral SARS-CoV-2 RNA (molecular test) or detecting the presence of antibodies triggered by the SARS-CoV-2 virus (serology test). A handful of studies have shown that symptoms, combined with demographic and/or diagnosis features, can be helpful for the prediction of COVID-19 test outcomes. However, due to nature of the test, serology and molecular tests vary significantly. There is no existing study on the correlation between serology and molecular tests, and what type of symptoms are the key factors indicating the COVID-19 positive tests. In this study, we propose a machine learning based approach to study serology and molecular tests, and use features to predict test outcomes. A total of 2,467 donors, each tested using one or multiple types of COVID-19 tests, are collected as our testbed. By cross checking test types and results, we study correlation between serology and molecular tests. For test outcome prediction, we label 2,467 donors as positive or negative, by using their serology or molecular test results, and create symptom features to represent each donormore »for learning. Because COVID-19 produces a wide range of symptoms and the data collection process is essentially error prone, we group similar symptoms into bins. This decreases the feature space and sparsity. Using binned symptoms, combined with demographic features, we train five classification algorithms to predict COVID-19 test results. Experiments show that XGBoost achieves the best performance with 76.85% accuracy and 81.4% AUC scores, demonstrating that symptoms are indeed helpful for predicting COVID-19 test outcomes. Our study investigates the relationship between serology and molecular tests, identifies meaningful symptom features associated with COVID-19 infection, and also provides a way for rapid screening and cost effective detection of COVID-19 infection.« less
  2. Abstract In this study, we propose to use machine learning to understand terminated clinical trials. Our goal is to answer two fundamental questions: (1) what are common factors/markers associated to terminated clinical trials? and (2) how to accurately predict whether a clinical trial may be terminated or not? The answer to the first question provides effective ways to understand characteristics of terminated trials for stakeholders to better plan their trials; and the answer to the second question can direct estimate the chance of success of a clinical trial in order to minimize costs. By using 311,260 trials to build a testbed with 68,999 samples, we use feature engineering to create 640 features, reflecting clinical trial administration, eligibility, study information, criteria etc. Using feature ranking, a handful of features, such as trial eligibility, trial inclusion/exclusion criteria, sponsor types etc. , are found to be related to the clinical trial termination. By using sampling and ensemble learning, we achieve over 67% Balanced Accuracy and over 0.73 AUC (Area Under the Curve) scores to correctly predict clinical trial termination, indicating that machine learning can help achieve satisfactory prediction results for clinical trial study.
  3. Gadekallu, Thippa Reddy (Ed.)
    As of March 30 2021, over 5,193 COVID-19 clinical trials have been registered through Among them, 191 trials were terminated, suspended, or withdrawn (indicating the cessation of the study). On the other hand, 909 trials have been completed (indicating the completion of the study). In this study, we propose to study underlying factors of COVID-19 trial completion vs . cessation, and design predictive models to accurately predict whether a COVID-19 trial may complete or cease in the future. We collect 4,441 COVID-19 trials from to build a testbed, and design four types of features to characterize clinical trial administration, eligibility, study information, criteria, drug types, study keywords, as well as embedding features commonly used in the state-of-the-art machine learning. Our study shows that drug features and study keywords are most informative features, but all four types of features are essential for accurate trial prediction. By using predictive models, our approach achieves more than 0.87 AUC (Area Under the Curve) score and 0.81 balanced accuracy to correctly predict COVID-19 clinical trial completion vs . cessation. Our research shows that computational methods can deliver effective features to understand difference between completed vs . ceased COVID-19 trials. In addition, such modelsmore »can also predict COVID-19 trial status with satisfactory accuracy, and help stakeholders better plan trials and minimize costs.« less