skip to main content

Search for: All records

Creators/Authors contains: "Ellena, Jeffrey F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A recent advance in the synthesis of alkenylated arenes was the demonstration that the Pd(OAc)2 catalyst precursor gives >95% selectivity toward styrene from ethylene and benzene under optimized conditions using excess Cu(II) carboxylate as the in situ oxidant [ Organometallics 2019, 38(19), 3532−3541]. To understand the mechanism underlying this catalysis, we applied density functional theory (DFT) calculations in combination with experimental studies. From DFT calculations, we determined the lowest-energy multimetallic Pd and Pd–Cu mixed metal species as possible catalyst precursors. From the various structures, we determined the cyclic heterotrinuclear complex PdCu2(μ-OAc)6 to be the global minimum in Gibbs free energy under conditions of excess Cu(II). For cyclic PdCu2(μ-OAc)6 and the parent [Pd(μ-OAc)2]3, we evaluated the barriers for benzene C–H activation through concerted metalation deprotonation (CMD). The PdCu2(μ-OAc)6 cyclic trimer leads to a CMD barrier of 33.5 kcal/mol, while the [Pd(μ-OAc)2]3 species leads to a larger CMD barrier at >35 kcal/mol. This decrease in the CMD barrier arises from the insertion of Cu(II) into the trimetallic species. Because cyclic PdCu2(μ-OAc)6 is likely the predominant species under experimental conditions (the Cu to Pd ratio is 480:1 at the start of catalysis) with a predicted CMD barrier within the range of the experimentallymore »determined activation barrier, we propose that cyclic PdCu2(μ-OAc)6 is the Pd species responsible for catalysis and report a full reaction mechanism based on DFT calculations. For catalytic conversion of benzene and ethylene to styrene at 120 °C using Pd(OAc)2 as the catalyst precursor and Cu(OPiv)2 (OPiv = pivalate) as the oxidant, an induction period of ∼1 h was observed, followed by catalysis with a turnover frequency of ∼2.3 × 10–3 s–1. In situ1H NMR spectroscopy experiments indicate that during the induction period, Pd(OAc)2 is likely converted to cyclic PdCu2(η2-C2H4)3(μ-OPiv)6, which is consistent with the calculations and consistent with the proposal that the active catalyst is the ethylene-coordinated heterotrinuclear complex cyclic PdCu2(η2-C2H4)3(μ-OPiv)6.« less
    Free, publicly-accessible full text available July 18, 2023
  2. Abstract

    Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin αIIbβ3receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin αIIbβ3receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.