Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Anaerobic gut fungi (AGF, Neocallimastigomycota) inhabit the alimentary tract of herbivores. Although strict anaerobes, studies have suggested their capacity to retain viability after various durations of air exposure. It is currently unclear whether AGF can actively grow, and not merely survive, in redox potentials (Eh) higher than those encountered in the herbivorous gut. We evaluated the growth of two AGF strains (Orpinomyces joyonii and Testudinimyces gracilis) at various Eh levels, achieved by manipulating the concentrations of reductant (cysteine hydrochloride) in culture media. Both strains exhibited robust and sustainable growth at negative Eh (−50 mV or below). However, growth in the absence of cysteine hydrochloride (Eh value around +50 mV) was possible only for O. joyonii and only for one subcultivation. The capacity to grow at +50 mV was further confirmed in four additional taxa (Pecoramyces ruminatium, Anaeromyces mucronatus, Aklioshbmyces papillarum, and Piromyces communis), while two (Aestipascuomyces dupliciliberans and Capellomyces foraminis) failed to grow under these conditions. Our results establish the ability of AGF to grow at redox potential values higher than those encountered in their natural habitats. Such capability could contribute to efficient AGF dispersal and horizontal transmission between hosts, and could have important implications for industrial applications of AGF.more » « less
-
Abstract Establishment of microbial communities in neonatal calves is vital for their growth and overall health. While this process has received considerable attention for bacteria, our knowledge on temporal progression of anaerobic gut fungi (AGF) in calves is lacking. Here, we examined AGF communities in faecal samples from six dairy cattle collected at 24 different time points during the pre‐weaning (days 1–48), weaning (days 48–60), and post‐weaning (days 60–360) phases. Quantitative polymerase chain reaction indicated that AGF colonisation occurs within 24 h after birth, with loads slowly increasing during pre‐weaning and weaning, then drastically increasing post‐weaning. Culture‐independent amplicon surveys identified higher alpha diversity during pre‐weaning/weaning, compared to post‐weaning. AGF community structure underwent a drastic shift post‐weaning, from a community enriched in genera commonly encountered in hindgut fermenters to one enriched in genera commonly encountered in adult ruminants.Comparison of AGF community between calves day 1 post‐birth and their mothers suggest a major role for maternal transmission, with additional input from cohabitating subjects. This distinct pattern of AGF progression could best be understood in‐light of their narrower niche preferences, metabolic specialisation, and physiological optima compared to bacteria, hence eliciting a unique response to changes in feeding pattern and associated structural GIT development during maturation.more » « less
-
Summary We report on the genomic characterization of three novel classes in the phylum Desulfobacterota. One class (proposed nameCandidatus‘Anaeroferrophillalia’) was characterized by heterotrophic growth capacity, either fermentatively or utilizing polysulfide, tetrathionate or thiosulfate as electron acceptors. In the absence of organic carbon sources, autotrophic growth via the Wood–Ljungdahl (WL) pathway and using hydrogen or Fe(II) as an electron donor is also inferred for members of the ‘Anaeroferrophillalia’. The second class (proposed nameCandidatus‘Anaeropigmentia’) was characterized by its capacity for growth at low oxygen concentration, and the capacity to synthesize the methyl/alkyl carrier CoM, an ability that is prevalent in the archaeal but rare in the bacterial domain. Pigmentation is inferred from the capacity for carotenoid (lycopene) production. The third class (proposed nameCandidatus‘Zymogenia’) was characterized by fermentative heterotrophic growth capacity, broad substrate range and the adaptation of some of its members to hypersaline habitats. Analysis of the distribution pattern of all three classes showed their occurrence as rare community members in multiple habitats, with preferences for anaerobic terrestrial, freshwater and marine environments over oxygenated (e.g. pelagic ocean and agricultural land) settings. Special preference for some members of the classCandidatus‘Zymogenia’ for hypersaline environments such as hypersaline microbial mats and lagoons was observed.more » « less
An official website of the United States government
