Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deceptive design patterns (sometimes called “dark patterns”) are user interface design elements that may trick, deceive, or mislead users into behaviors that often benefit the party implementing the design over the end user. Prior work has taxonomized, investigated, and measured the prevalence of such patterns primarily in visual user interfaces (e.g., on websites). However, as the ubiquity of voice assistants and other voice-assisted technologies increases, we must anticipate how deceptive designs will be (and indeed, are already) deployed in voice interactions. This paper makes two contributions towards characterizing and surfacing deceptive design patterns in voice interfaces. First, we make a conceptual contribution, identifying key characteristics of voice interfaces that may enable deceptive design patterns, and surfacing existing and theoretical examples of such patterns. Second, we present the findings from a scenario-based user survey with 93 participants, in which we investigate participants’ perceptions of voice interfaces that we consider to be both deceptive and non-deceptive.more » « less
-
In prior work, researchers proposed an Internet of Things (IoT) security and privacy label akin to a food nutrition label, based on input from experts. We conducted a survey with 1,371 Mechanical Turk (MTurk) participants to test the effectiveness of each of the privacy and security attribute-value pairs proposed in that prior work along two key dimensions: ability to convey risk to consumers and impact on their willingness to purchase an IoT device. We found that the values intended to communicate increased risk were generally perceived that way by participants. For example, we found that consumers perceived more risk when a label conveyed that data would be sold to third parties than when it would not be sold at all, and that consumers were more willing to purchase devices when they knew that their data would not be retained or shared with others. However, participants’ risk perception did not always align with their willingness to purchase, sometimes due to usability concerns. Based on our findings, we propose actionable recommendations on how to more effectively present privacy and security attributes on an IoT label to better communicate risk to consumersmore » « less
-
Information about the privacy and security of Internet of Things (IoT) devices is not readily available to consumers who want to consider it before making purchase decisions. While legislators have proposed adding succinct, consumer accessible, labels, they do not provide guidance on the content of these labels. In this paper, we report on the results of a series of interviews and surveys with privacy and security experts, as well as consumers, where we explore and test the design space of the content to include on an IoT privacy and security label. We conduct an expert elicitation study by following a three-round Delphi process with 22 privacy and security experts to identify the factors that experts believed are important for consumers when comparing the privacy and security of IoT devices to inform their purchase decisions. Based on how critical experts believed each factor is in conveying risk to consumers, we distributed these factors across two layers—a primary layer to display on the product package itself or prominently on a website, and a secondary layer available online through a web link or a QR code. We report on the experts’ rationale and arguments used to support their choice of factors. Moreover, to study how consumers would perceive the privacy and security information specified by experts, we conducted a series of semi-structured interviews with 15 participants, who had purchased at least one IoT device (smart home device or wearable). Based on the results of our expert elicitation and consumer studies, we propose a prototype privacy and security label to help consumers make more informed IoTrelated purchase decisions.more » « less
-
This one-day workshop aims to explore ubiquitous privacy research and design in the context of mobile and IoT by facilitating discourse among scholars from the networked privacy and design communities. The complexity in modern socio-technical systems points to the potential of utilizing various design techniques (e.g., speculative design, design fiction, and research through design practices) in surfacing the potential consequences of novel technologies, particularly those that traditional user studies may not reveal. The results will shed light on future privacy designs for mobile and IoT technologies from both empirical and design perspectives.more » « less