skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Engler, Adam J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The collagen-rich tumor microenvironment plays a critical role in directing the migration behavior of cancer cells. 3D collagen architectures with small pores have been shown to confine cells and induce aggressive collective migration, irrespective of matrix stiffness and density. However, it remains unclear how cells sense collagen architecture and transduce this information to initiate collective migration. Here, we tune collagen architecture and analyze its effect on four core cell-ECM interactions: cytoskeletal polymerization, adhesion, contractility, and matrix degradation. From this comprehensive analysis, we deduce that matrix architecture initially modulates cancer cell adhesion strength, and that this results from architecture-induced changes to matrix degradability. That is, architectures with smaller pores are less degradable, and degradability is required for cancer cell adhesion to 3D fibrilar collagen. The biochemical consequences of this 3D low-attachment state are similar to those induced by suspension culture, including metabolic and oxidative stress. One distinction from suspension culture is the induction of collagen catabolism that occurs in 3D low-attachment conditions. Cells also upregulate Snail1 and Notch signaling in response to 3D low-attachment, which suggests a mechanism for the emergence of collective behaviors. 
    more » « less