In bacteria, natural transposon mobilization can drive adaptive genomic rearrangements. Here, we build on this capability and develop an inducible, self‐propagating transposon platform for continuous genome‐wide mutagenesis and the dynamic rewiring of gene networks in bacteria. We first use the platform to study the impact of transposon functionalization on the evolution of parallel
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Escherichia coli populations toward diverse carbon source utilization and antibiotic resistance phenotypes. We then develop a modular, combinatorial assembly pipeline for the functionalization of transposons with synthetic or endogenous gene regulatory elements (e.g., inducible promoters) as well as DNA barcodes. We compare parallel evolutions across alternating carbon sources and demonstrate the emergence of inducible, multigenic phenotypes and the ease with which barcoded transposons can be tracked longitudinally to identify the causative rewiring of gene networks. This work establishes a synthetic transposon platform that can be used to optimize strains for industrial and therapeutic applications, for example, by rewiring gene networks to improve growth on diverse feedstocks, as well as help address fundamental questions about the dynamic processes that have sculpted extant gene networks. -
Abstract Making cells magnetic is a long‐standing goal of chemical biology, aiming to enable the separation of cells from complex biological samples and their visualization in vivo using magnetic resonance imaging (MRI). Previous efforts towards this goal, focused on engineering cells to biomineralize superparamagnetic or ferromagnetic iron oxides, have been largely unsuccessful due to the stringent required chemical conditions. Here, we introduce an alternative approach to making cells magnetic, focused on biochemically maximizing cellular paramagnetism. We show that a novel genetic construct combining the functions of ferroxidation and iron chelation enables engineered bacterial cells to accumulate iron in “ultraparamagnetic” macromolecular complexes, allowing these cells to be trapped with magnetic fields and imaged with MRI in vitro and in vivo. We characterize the properties of these cells and complexes using magnetometry, nuclear magnetic resonance, biochemical assays, and computational modeling to elucidate the unique mechanisms and capabilities of this paramagnetic concept.
-
Abstract Making cells magnetic is a long‐standing goal of chemical biology, aiming to enable the separation of cells from complex biological samples and their visualization in vivo using magnetic resonance imaging (MRI). Previous efforts towards this goal, focused on engineering cells to biomineralize superparamagnetic or ferromagnetic iron oxides, have been largely unsuccessful due to the stringent required chemical conditions. Here, we introduce an alternative approach to making cells magnetic, focused on biochemically maximizing cellular paramagnetism. We show that a novel genetic construct combining the functions of ferroxidation and iron chelation enables engineered bacterial cells to accumulate iron in “ultraparamagnetic” macromolecular complexes, allowing these cells to be trapped with magnetic fields and imaged with MRI in vitro and in vivo. We characterize the properties of these cells and complexes using magnetometry, nuclear magnetic resonance, biochemical assays, and computational modeling to elucidate the unique mechanisms and capabilities of this paramagnetic concept.