- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Cimorelli, Jack (1)
-
Eniola, Victor (1)
-
Jin, Xinfang (1)
-
Niezrecki, Christopher (1)
-
Willis, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Addressing resource intermittency is crucial for designing effective and economical renewable energy systems for many applications. Hydrogen as long-term energy storage medium shows promise for increasing renewables penetration into the grid. Cost-effective hybrid wind-hydrogen microgrids (HWHMs) require system-level sizing of each subcomponent. This study employs low-order HWHM component models in a system-level framework to predict HWHM performance. It introduces a novel approach to investigate the optimal sizing of HWHMs. The study uniquely addresses the impact of wind speed fluctuation amplitudes and frequency variations on system design – an area not previously explored. The model is run for 7 days using several different wind speed profiles and real load demand data from an off-grid Naval facility on an island in California. In our test cases, the findings indicate that fewer wind turbines and more hydrogen tanks are required to successfully meet demand when wind speed fluctuations increase. For example, when the wind speed fluctuation increases from 0.68 to 2.04 m/s, and the wind turbine is expected to maintain an average power equivalent to 90% of the peak load, the turbine capacity drops by 17%, requiring a 304% rise in the number of tanks. However, the frequency of wind speed variation has a negligible effect on the optimal HWHM configuration. Through a rule-based optimization algorithm, this research offers important insights for designing reliable microgrids capable of meeting critical loads despite highly variable wind conditions.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
