Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)
Abstract The problem of localizing a moving target arises in various forms in wireless sensor networks. Deploying multiple sensing receivers and using the time-difference-of-arrival (TDOA) of the target’s emitted signal is widely considered an effective localization technique. Traditionally, TDOA-based algorithms adopt a centralized approach where all measurements are sent to a predefined reference node for position estimation. More recently, distributed TDOA-based localization algorithms have been shown to improve the robustness of these estimates. For target models governed by highly stochastic processes, the method of nonlinear filtering and state estimation must be carefully considered. In this work, a distributed TDOA-based particle filter algorithm is proposed for localizing a moving target modeled by a discrete-time correlated random walk (DCRW). We present a method for using data collected by the particle filter to estimate the unknown probability distributions of the target’s movement model, and then apply the distribution estimates to recursively update the particle filter’s propagation model. The performance of the distributed approach is evaluated through numerical simulation, and we show the benefit of using a particle filter with online model learning by comparing it with the non-adaptive approach.
-
null (Ed.)Abstract Background Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for understanding the relationships between aquatic organisms and their environment, but more information is needed to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or pitch. Results Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than 300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m) when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending (pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no significant effect when moving away from the transmitter. Conclusion Results suggested that much of the observed variation in detection efficiency is related to shielding of the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refinements, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments.more » « less
-
This paper presents an adaptive, needle variation-based feedback scheme for controlling affine nonlinear systems with unknown parameters that appear linearly in the dynamics. The proposed approach combines an online parameter identifier with a second-order sequential action controller that has shown great promise for nonlinear, underactuated, and high-dimensional constrained systems. Simulation results on the dynamics of an underwater glider and robotic fish show the advantages of introducing online parameter estimation to the controller when the model parameters deviate from their true values or are completely unknown.more » « less