skip to main content

Search for: All records

Creators/Authors contains: "Enriquez, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The California Community College system plays an important role in providing affordable and accessible education to diverse student populations by allowing them to complete all of their lower-division course work and then transfer to a four-year institution to complete a bachelor’s degree. However, the increasing divergence of the lower-division requirements among different four-year institutions and among the different fields of engineering, coupled with decreasing enrollments and resources, has forced many community colleges to cancel low-enrollment classes and high-cost programs including those in engineering. To address this issue, four community colleges in the San Francisco Bay Area developed an innovative program titled Creating Alternative Learning Strategies for Transfer Engineering Programs (CALSTEP). Funded by the National Science Foundation through the Improving Undergraduate STEM Education (IUSE) program, CALSTEP aims to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. In addition to developing and implementing curriculum materials and resources for the core lower-division engineering courses, one of the main components of CALSTEP is disseminating the curriculum widely in California community college engineering programs. This is done through the Summer Engineering Teaching Institute, which is a two-daymore »teaching workshop that introduces community college engineering faculty to the CALSTEP curriculum, and assists faculty in implementing the curriculum and developing alternative teaching and learning strategies to increase enrollment and improve teaching effectiveness. Results of curriculum development and the implementation of the Summer Engineering Teaching Institute will be highlighted in this paper, as well as future plans to maximize the impact of the program in increasing access to engineering education among thousands of community college engineering students and strengthening engineering transfer programs in the state.« less
  2. Broadening participation in engineering among underrepresented minority students remains a big challenge for institutions of higher education. Since a large majority of underrepresented students attend community colleges, engineering transfer programs at these community colleges can play an important role in addressing this challenge. However, for most community college engineering programs, developing strategies and programs to increase the number and diversity of students successfully pursuing careers in engineering is especially challenging due to limited expertise, shrinking resources, and continuing budget crises. This paper is a description of how a small engineering transfer program at a Hispanic-Serving community college in California developed effective partnerships with high schools, other institutions of higher education, and industry partners in order to create opportunities for underrepresented community college students to excel in engineering. Developed through these partnerships are programs for high school students, current community college students, and community college engineering faculty. Programs for high school students include a) the Summer Engineering Institute – a two-week residential summer camp for sophomore and junior high school students, and b) the STEM Institute – a three-week program for high school freshmen to explore STEM fields. Academic and support programs for college students include: a) Math Jam – amore »one-week intensive math placement test review and preparation program; b) a scholarship and mentoring program academically talented and financially needy STEM students; c) a two-week introduction to research program held during the winter break to prepare students for research internships; d) a ten-week summer research internship program; e) Physics Jam – an intensive program to prepare students for success in Physics; f) Embedded Peer Instruction Cohort – a modified Supplemental Instruction program for STEM courses; g) STEM Speaker Series – a weekly presentation by professionals talking about their career and educational paths. Programs for community college STEM faculty and transfer programs include: a) Summer Engineering Teaching Institute – a two-day teaching workshop for community college STEM faculty; b) Joint Engineering Program – a consortium of 28 community college engineering programs all over California to align curriculum, improve teaching effectiveness, improve the engineering transfer process, and strengthen community college engineering transfer programs; c) Creating Alternative Learning Strategies for Transfer Engineering Programs – a collaborative program that aims to increase access to engineering courses for community college students through online instruction and alternative classroom models; and d) California Lower-Division Engineering Articulation Workshop – to align the engineering curriculum. In addition to describing the development and implementation of these programs, the paper will also provide details on how they have contributed to increasing the interest, facilitating the entry, improving the retention and enhancing the success of underrepresented minority students in engineering, as well as contributing to the strengthening of the community college engineering education pipeline.« less
  3. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition tomore »providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation.« less
  4. There has been a recent increase in awareness of the important role that community colleges play in educating future engineers, especially in broadening participation among students from underrepresented groups. However, budget problems at the state and national levels have resulted in continuing budget cuts in community colleges. With limited resources while responding to increasing variability of lower-division transfer curricula as required by four-year engineering programs, it has become increasingly difficult for small community college engineering programs to support all the courses needed by students to transfer. Meanwhile, transfer admissions have become increasingly more competitive because of budget cuts in four-year universities. As a result, prospective engineering students who attend community colleges with limited or no engineering course offerings are at a disadvantage for both transfer admission as well as time to completion upon transfer. This paper is a description of a collaborative project among community college engineering programs in California to address this problem by aligning engineering curriculum, enhancing teaching effectiveness using Tablet PCs, and increasing access to engineering courses through online education. The project includes a Summer Engineering Teaching Institute designed to assist community college engineering faculty in developing a Tablet-PC-enhanced model of instruction, and implementing online courses. Themore »project also involves a partnership among California community college engineering programs to design and implement a Joint Engineering Program that is delivered online. This paper summarizes the results of the first two years of implementation of the project, and explores its potential to strengthen the community college engineering education pipeline in order to increase and diversify the engineering workforce.« less
  5. Although many California Community College students from underrepresented groups enter college with high levels of interest in science, technology, engineering, and mathematics (STEM), the majority of them drop out or change majors even before taking transfer-level courses due to a variety of reasons including financial difficulties, inadequate academic preparation, lack of family support, poor study skills, and inadequate or ineffective academic advising and mentoring. In 2009, Cañada College, a federally designated Hispanic-serving institution in the San Francisco Bay Area, received a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant to develop a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. In collaboration with the College’s Mathematics, Engineering, and Science Achievement (MESA) program – an academic, personal, and professional support structure has been designed and implemented to maximize the likelihood of success of these students. This support structure aims to create a learning community among the scholars through a combination of academic counseling and mentoring, personal enrichment and professional development opportunities, and strong academic support services. This paper describes how faculty, staff, administrators, alumni, student organizations, and partners in industry, four-yearmore »institutions, and professional organizations can be involved in creating an academic infrastructure that promotes academic excellence, leadership skills, and personal and professional growth among the diversity of financially needy STEM students in a community college.« less
  6. The California Community College system has been very successful in providing affordable and accessible education to diverse student populations by allowing them to complete all of their lower-division course work and then transfer to a four-year institution to complete a bachelor’s degree. Recent developments, however, have threatened the viability of engineering programs in California community colleges, endangering this very important pipeline in the engineering educational system. The increasing divergence of the lower-division requirements among different four-year institutions and among the different fields of engineering, coupled with the recent State budget crisis has forced many community colleges to cancel low-enrollment classes and high-cost programs including those in engineering. In response to this situation, Cañada College, a federally designated Hispanic-serving institution in the San Francisco Bay Area, has developed an innovative program entitled Online and Networked Education for Students in Transfer Engineering Programs (ONE-STEP). Funded by the National Science Foundation Engineering Education and Centers through the Innovation in Engineering Education and Curriculum, and Infrastructure (IEECI) program, ONE-STEP aims to improve community college engineering education through the use of Tablet-PC and wireless network technologies. The program includes a Summer Engineering Teaching Institute that will assist community college engineering faculty in developing a Tablet-PC-enhancedmore »interactive model of engineering instruction, and implementing online courses using CCC Confer—a videoconferencing platform that is available free of charge to all faculty and staff of the California Community College system. ONE-STEP will also develop partnerships with community colleges currently without an engineering program to design and implement a Joint Engineering Program that is delivered through CCC Confer. The program has the potential to significantly increase the viability of engineering programs by increasing teaching efficiency and effectiveness with minimal additional costs.« less