Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 μs.more » « less
-
Abstract Above‐bandgap femtosecond optical excitation of a ferroelectric/dielectric BaTiO3/CaTiO3superlattice leads to structural responses that are a consequence of the screening of the strong electrostatic coupling between the component layers. Time‐resolved X‐ray free‐electron laser diffraction shows that the structural response to optical excitation includes a net lattice expansion of the superlattice consistent with depolarization‐field screening driven by the photoexcited charge carriers. The depolarization‐field‐screening‐driven expansion is separate from a photoacoustic pulse launched from the bottom electrode on which the superlattice is epitaxially grown. The distribution of diffracted intensity of superlattice X‐ray reflections indicates that the depolarization‐field‐screening‐induced strain includes a photoinduced expansion in the ferroelectric BaTiO3and a contraction in CaTiO3. The magnitude of expansion in BaTiO3layers is larger than the contraction in CaTiO3. The difference in the magnitude of depolarization‐field‐screening‐driven strain in the BaTiO3and CaTiO3components can arise from the contribution of the oxygen octahedral rotation patterns at the BaTiO3/CaTiO3interfaces to the polarization of CaTiO3. The depolarization‐field‐screening‐driven polarization reduction in the CaTiO3layers points to a new direction for the manipulation of polarization in the component layers of a strongly coupled ferroelectric/dielectric superlattice.more » « less
An official website of the United States government
