- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Eppner, Clemens (2)
-
Chen, Sirui (1)
-
Fang, Xiaolin (1)
-
Fox, Dietwr (1)
-
Garrett, Caelan (1)
-
Kaelbling, Leslie (1)
-
Liu, C Karen (1)
-
Lozano-Perez, Tomas (1)
-
Wang, Ruocheng (1)
-
Wu, Albert (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fang, Xiaolin; Garrett, Caelan; Eppner, Clemens; Lozano-Perez, Tomas; Kaelbling, Leslie; Fox, Dietwr (, IEEE/RSJ International Conference on Intelligent Robots and Systems)Generative models such as diffusion models, excel at capturing high-dimensional distributions with diverse input modalities, e.g. robot trajectories, but are less effective at multistep constraint reasoning. Task and Motion Planning (TAMP) approaches are suited for planning multi-step autonomous robot manipulation. However, it can be difficult to apply them to domains where the environment and its dynamics are not fully known. We propose to overcome these limitations by composing diffusion models using a TAMP system. We use the learned components for constraints and samplers that are difficult to engineer in the planning model, and use a TAMP solver to search for the task plan with constraint-satisfying action parameter values. To tractably make predictions for unseen objects in the environment, we define the learned samplers and TAMP operators on learned latent embedding of changing object states. We evaluate our approach in a simulated articulated object manipulation domain and show how the combination of classical TAMP, generative modeling, and latent embedding enables multi-step constraint-based reasoning. We also apply the learned sampler in the real world.more » « less
An official website of the United States government

Full Text Available