Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
New Zealand's Hikurangi margin is known for recurring shallow slow slip, numerous forearc seeps, and a productive volcanic arc. Fluids derived from the subducting slab are implicated in these processes. However, prior studies lacked evidence of basic crustal structure of the slab, or of its water content that would allow an assessment of fluid budgets. We review several recent studies that place bounds on the fluid reservoirs within the subducting Hikurangi Plateau that could be released between the forearc and backarc regions. Subducting sediments are thickest (> 1 km) in the southern Hikurangi margin, where there is a unit of turbidites beneath the regional proto decollement. These subducting sediments begin draining near the deformation front, resulting in a 20-30 % loss of volumetric fluid content. In contrast, the central and northern Hikurangi margins lack a continuous unit of subducting sediment. Here, lenses of poorly drained sediment underthrust the forearc in the wakes of seamount collisions. The Hikurangi Plateau's crustal structure resembles normal oceanic crust with a doubled upper crust of basalt and diabase. Above this upper crust is a ~1.5 km thick unit of hydrated volcaniclastic conglomerates. Seamounts can locally increase the upper crust's thickness by an extra ~1-3 km, raising the amount of porous, altered volcanic material. Finally, P-wave velocity models of the slab's upper mantle show velocity changes that could indicate moderate differences in serpentinization. Active bend-faults that could circulate fluids to the upper mantle are sparse prior to subduction. However, upon subduction the upper mantle seismic velocities of the Hikurangi Plateau are significantly less in the north compared to the south, possibly due to enhanced slab faulting beneath the forearc. Separate thermo-petrologic models for the shallow forearc and deeper subduction system suggests that fluid release from volcaniclastic units and the thickened Hikurangi Plateau upper crust is expected to occur over a range of depths extending from ~12 km to ~130 km, providing fluids for onshore seep systems and hydrous melting of the mantle wedge, whereas dehydration of serpentinite is greatest beyond the arc front. Subducting sediments and volcaniclastic units are the most readily available source of fluids for shallow slow slip.more » « less
-
Abstract During subduction, the downgoing oceanic crust is exposed to high temperatures in the mantle wedge, causing volatile‐bearing minerals to break down and release hydrous fluids into the forearc. These fluids percolate upwards, reacting with the mantle wedge to form hydrated ultramafic lithologies, including serpentinite. To accurately track the fate and impact of water on the forearc, we develop time‐dependent models that self‐consistently capture both serpentinite ingrowth and the associated rheological weakening of the plate interface. Unlike many subduction models that investigate forearc serpentinization and prescribe plate velocities, geometries, or steady‐state conditions, our approach allows plates to evolve dynamically without predefined velocities or geometries. During subduction infancy, serpentinite accumulates rapidly. As subduction matures, serpentinite ingrowth decreases, and more serpentinite is also dragged downward by the slab. To elucidate the links between subduction dynamics and serpentinization, we consider variations in serpentinite strength and hydration state of the incoming plate. Subducting fully water‐saturated sediments yield ∼3× greater forearc serpentinite than within the moderately hydrated reference case. The water‐saturated case produces a weaker interface and, in turn, subduction zone convergence rates ∼40% higher than in an endmember case with anhydrous sediment. A lower serpentinite strength also produces higher convergence rates despite more downdragging of serpentinite from the forearc. We find that hydrous sediments not only lubricate the interface directly by weakening it, as previously suggested, but also by dehydrating and releasing water that produces weak serpentinite in the mantle wedge, with such feedback only able to be captured within fully coupled dynamic models.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Hydration of the subduction zone forearc mantle wedge influences the downdip distribution of seismicity, the availability of fluids for arc magmatism, and Earth's long term water cycle. Reconstructions of present‐day subduction zone thermal structures using time‐invariant geodynamic models indicate relatively minor hydration, in contrast to many geophysical and geologic observations. We pair a dynamic, time‐evolving thermal model of subduction with phase equilibria modeling to investigate how variations in slab and forearc temperatures from subduction infancy through to maturity contribute to mantle wedge hydration. We find that thermal state during the intermediate period of subduction, as the slab freely descends through the upper mantle, promotes extensive forearc wedge hydration. In contrast, during early subduction the forearc is too hot to stabilize hydrous minerals in the mantle wedge, while during mature subduction, slab dehydration dominantly occurs beyond forearc depths. In our models, maximum wedge hydration during the intermediate phase is 60%–70% and falls to 20%–40% as quasi‐steady state conditions are approached during maturity. Comparison to global forearc H2O capacities reveals that consideration of thermal evolution leads to an order of magnitude increase in estimates for current extents of wedge hydration and provides better agreement with geophysical observations. This suggests that hydration of the forearc mantle wedge represents a potential vast reservoir of H2O, on the order of 3.4–5.9 × 1021 g globally. These results provide novel insights into the subduction zone water cycle, new constraints on the mantle wedge as a fluid reservoir and are useful to better understand geologic processes at plate margins.more » « less
An official website of the United States government

Full Text Available