skip to main content


Search for: All records

Creators/Authors contains: "Eracleous, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The population-wide properties and demographics of extragalactic X-ray binaries (XRBs) correlate with the star formation rates (SFRs), stellar masses (M), and environmental factors (such as metallicity,Z) of their host galaxy. Although there is evidence that XRB scaling relations (LX/SFR for high-mass XRBs (HMXBs) andLX/Mfor low-mass XRBs) may depend on metallicity and stellar age across large samples of XRB-hosting galaxies, disentangling the effects of metallicity and stellar age from stochastic effects, particularly on subgalactic scales, remains a challenge. We use archival X-ray through IR observations of the nearby galaxy NGC 300 to self-consistently model the broadband spectral energy distribution and examine radial trends in its XRB population. We measure a current (<100 Myr) SFR of 0.18 ± 0.08 Myr−1and stellar massM=(2.150.14+0.26)×109M. Although we measure a metallicity gradient and radially resolved star formation histories that are consistent with the literature, there is a clear excess in the number of X-ray sources below ∼1037erg s−1that are likely a mix of variable XRBs and additional background active galactic nuclei. When we compare the subgalacticLX/SFR ratios as a function ofZto the galaxy-integratedLX-SFR-Zrelationships from the literature, we find that only the regions hosting the youngest (≲30 Myr) HMXBs agree with predictions, hinting at time evolution of theLX–SFR–Zrelationship.

     
    more » « less
  2. Abstract

    We present the optical–near-infrared spectral energy distributions (SED) and near-infrared variability properties of 30 low-redshift iron low-ionization Broad Absorption Line quasars (FeLoBALQs) and matched samples of LoBALQs and unabsorbed quasars. Significant correlations between the SED properties and accretion rate indicators found among the unabsorbed comparison sample objects suggest an intrinsic origin for SED differences. A range of reddening likely mutes these correlations among the FeLoBAL quasars. The rest-frame optical-band reddening is correlated with the location of the outflow, suggesting a link between the outflows and the presence of dust. We analyzed the WISE variability and provide a correction for photometry uncertainties in an appendix. We found an anticorrelation between the variability amplitude and inferred continuum emission region size, and we suggest that as the origin of the anticorrelation between variability amplitude and luminosity typically observed in quasars. We found that the LoBALQ Optical Emission-line and other parameters are more similar to those of the unabsorbed continuum sample objects than the FeLoBALQs. Thus, FeLoBAL quasars are a special population of objects. We interpret the results using an accretion-rate scenario for FeLoBAL quasars. The high-accretion-rate FeLoBAL quasars are radiating powerfully enough to drive a thick, high-velocity outflow. Quasars with intermediate accretion rates may have an outflow, but it is not sufficiently thick to include Feiiabsorption. Low-accretion-rate FeLoBAL outflows originate in absorption in a failing torus, no longer optically thick enough to reprocess radiation into the near-IR.

     
    more » « less
  3. ABSTRACT

    Galaxy clusters enable unique opportunities to study cosmology, dark matter, galaxy evolution, and strongly lensed transients. We here present a new cluster-finding algorithm, CluMPR (Clusters from Masses and Photometric Redshifts), that exploits photometric redshifts (photo-z’s) as well as photometric stellar mass measurements. CluMPR uses a 2D binary search tree to search for overdensities of massive galaxies with similar redshifts on the sky and then probabilistically assigns cluster membership by accounting for photo-z uncertainties. We leverage the deep DESI Legacy Survey grzW1W2 imaging over one-third of the sky to create a catalogue of $\sim 300\, 000$ galaxy cluster candidates out to z = 1, including tabulations of member galaxies and estimates of each cluster’s total stellar mass. Compared to other methods, CluMPR is particularly effective at identifying clusters at the high end of the redshift range considered (z = 0.75–1), with minimal contamination from low-mass groups. These characteristics make it ideal for identifying strongly lensed high-redshift supernovae and quasars that are powerful probes of cosmology, dark matter, and stellar astrophysics. As an example application of this cluster catalogue, we present a catalogue of candidate wide-angle strongly lensed quasars in Appendix C. The nine best candidates identified from this sample include two known lensed quasar systems and a possible changing-look lensed QSO with SDSS spectroscopy. All code and catalogues produced in this work are publicly available (see Data Availability).

     
    more » « less
  4. Abstract

    About 3%–10% of Type I active galactic nuclei (AGNs) have double-peaked broad Balmer lines in their optical spectra originating from the motion of gas in their accretion disk. Double-peaked profiles arise not only in AGNs, but occasionally appear during optical flares from tidal disruption events and changing-state AGNs. In this paper, we identify 250 double-peaked emitters (DPEs) among a parent sample of optically variable broad-line AGNs in the Zwicky Transient Facility (ZTF) survey, corresponding to a DPE fraction of 19%. We model spectra of the broad Hαemission-line regions and provide a catalog of the fitted accretion disk properties for the 250 DPEs. Analysis of power spectra derived from the 5 yr ZTF light curves finds that DPE light curves have similar amplitudes and power-law indices to other broad-line AGNs. Follow-up spectroscopy of 12 DPEs reveals that ∼50% display significant changes in the relative strengths of their red and blue peaks over long 10–20 yr timescales, indicating that broad-line profile changes arising from spiral arm or hotspot rotation are common among optically variable DPEs. Analysis of the accretion disk parameters derived from spectroscopic modeling provides evidence that DPEs are not in a special accretion state, but are simply normal broad-line AGNs viewed under the right conditions for the accretion disk to be easily visible. We include inspiraling supermassive black hole binary candidate SDSSJ1430+2303 in our analysis, and discuss how its photometric and spectroscopic variability is consistent with the disk-emitting AGN population in the ZTF survey.

     
    more » « less
  5. Abstract

    To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here.

     
    more » « less
  6. Extremely variable quasars can also show strong changes in broad-line emission strength and are known as changing-look quasars (CLQs). To study the CLQ transition mechanism, we present a pilot sample of CLQs with X-ray observations in both the bright and faint states. From a sample of quasars with bright-state archival SDSS spectra and (Chandra or XMM-Newton) X-ray data, we identified five new CLQs via optical spectroscopic follow-up and then obtained new target-of-opportunity X-ray observations with Chandra. No strong absorption is detected in either the bright- or the faint-state X-ray spectra. The intrinsic X-ray flux generally changes along with the optical variability, and the X-ray power-law slope becomes harder in the faint state. Large-amplitude mid-infrared variability is detected in all five CLQs, and it echoes the variability in the optical with a time lag expected from the light-crossing time of the dusty torus for CLQs with robust lag measurements. The changing-obscuration model is not consistent with the observed X-ray spectra and spectral energy distribution changes seen in these CLQs. It is highly likely that the observed changes are due to the changing accretion rate of the supermassive black hole, so the multiwavelength emission varies accordingly, with promising analogies to the accretion states of X-ray binaries. 
    more » « less
  7. Abstract

    “Changing-look” active galactic nuclei (CL-AGNs) challenge our basic ideas about the physics of accretion flows and circumnuclear gas around supermassive black holes. Using first-year Sloan Digital Sky Survey V (SDSS-V) repeated spectroscopy of nearly 29,000 previously known active galactic nuclei (AGNs), combined with dedicated follow-up spectroscopy, and publicly available optical light curves, we have identified 116 CL-AGNs where (at least) one broad emission line has essentially (dis-)appeared, as well as 88 other extremely variable systems. Our CL-AGN sample, with 107 newly identified cases, is the largest reported to date, and includes ∼0.4% of the AGNs reobserved in first-year SDSS-V operations. Among our CL-AGNs, 67% exhibit dimming while 33% exhibit brightening. Our sample probes extreme AGN spectral variability on months to decades timescales, including some cases of recurring transitions on surprisingly short timescales (≲2 months in the rest frame). We find that CL events are preferentially found in lower-Eddington-ratio (fEdd) systems: Our CL-AGNs have afEdddistribution that significantly differs from that of a carefully constructed, redshift- and luminosity-matched control sample (Anderson–Darling test yieldingpAD≈ 6 × 10−5; medianfEdd≈ 0.025 versus 0.043). This preference for lowfEddstrengthens previous findings of higher CL-AGN incidence at lowerfEdd, found in smaller samples. Finally, we show that the broad Mgiiemission line in our CL-AGN sample tends to vary significantly less than the broad Hβemission line. Our large CL-AGN sample demonstrates the advantages and challenges in using multi-epoch spectroscopy from large surveys to study extreme AGN variability and physics.

     
    more » « less
    Free, publicly-accessible full text available April 26, 2025
  8. Abstract

    We present multiwavelength characterization of 65 high-mass X-ray binary (HMXB) candidates in M33. We use the Chandra ACIS survey of M33 (ChASeM33) catalog to select hard X-ray point sources that are spatially coincident with UV-bright point-source optical counterparts in the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region catalog, which covers the inner disk of M33 at near-IR, optical, and near-UV wavelengths. We perform spectral energy distribution fitting on multiband photometry for each point-source optical counterpart to measure its physical properties including mass, temperature, luminosity, and radius. We find that the majority of the HMXB companion star candidates are likely B-type main-sequence stars, suggesting that the HMXB population of M33 is dominated by Be X-ray binaries (Be-XRBs), as is seen in other Local Group galaxies. We use spatially resolved recent star formation history maps of M33 to measure the age distribution of the HMXB candidate sample and the HMXB production rate for M33. We find a bimodal distribution for the HMXB production rate over the last 80 Myr, with a peak at ∼10 and ∼40 Myr, which match theoretical formation timescales for the most massive HMXBs and Be-XRBs, respectively. We measure an HMXB production rate of 107–136 HMXBs/(Myr−1) over the last 50 Myr and 150–199 HMXBs/(Myr−1) over the last 80 Myr. For sources with compact object classifications from overlapping NuSTAR observations, we find a preference for giant/supergiant companion stars in black hole HMXBs and main-sequence companion stars in neutron star HMXBs.

     
    more » « less
  9. null (Ed.)