Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Online education technologies, such as intelligent tutoring systems, have garnered popularity for their automation. Whether it be automated support systems for teachers (grading, feedback, summary statistics, etc.) or support systems for students (hints, common wrong answer messages, scaffolding), these systems have built a well rounded support system for both students and teachers alike. The automation of these online educational technologies, such as intelligent tutoring systems, have often been limited to questions with well structured answers such as multiple choice or fill in the blank. Recently, these systems have begun adopting support for a more diverse set of question types. More specifically, open response questions. A common tool for developing automated open response tools, such as automated grading or automated feedback, are pre-trained word embeddings. Recent studies have shown that there is an underlying bias within the text these were trained on. This research aims to identify what level of unfairness may lie within machine learned algorithms which utilize pre-trained word embeddings. We attempt to identify if our ability to predict scores for open response questions vary for different groups of student answers. For instance, whether a student who uses fractions as opposed to decimals. By performing a simulated study, we are able to identify the potential unfairness within our machine learned models with pre-trained word embeddings.more » « less
-
null (Ed.)Open-ended questions in mathematics are commonly used by teachers to monitor and assess students’ deeper conceptual understanding of content. Student answers to these types of questions often exhibit a combination of language, drawn diagrams and tables, and mathematical formulas and expressions that supply teachers with insight into the processes and strategies adopted by students in formulating their responses. While these student responses help to inform teachers on their students’ progress and understanding, the amount of variation in these responses can make it difficult and time-consuming for teachers to manually read, assess, and provide feedback to student work. For this reason, there has been a growing body of research in developing AI-powered tools to support teachers in this task. This work seeks to build upon this prior research by introducing a model that is designed to help automate the assessment of student responses to open-ended questions in mathematics through sentence-level semantic representations. We find that this model outperforms previously published benchmarks across three different metrics. With this model, we conduct an error analysis to examine characteristics of student responses that may be considered to further improve the method.more » « less
-
Online education technologies, such as intelligent tutoring systems, have garnered popularity for their automation. Whether it be automated support systems for teachers (grading, feedback, summary statistics, etc.) or support systems for students (hints, common wrong answer messages, scaffolding), these systems have built a well rounded support system for both students and teachers alike. The automation of these online educational technologies, such as intelligent tutoring systems, have often been limited to questions with well structured answers such as multiple choice or fill in the blank. Recently, these systems have begun adopting support for a more diverse set of question types. More specifically, open response questions. A common tool for developing automated open response tools, such as automated grading or automated feedback, are pre-trained word embeddings. Recent studies have shown that there is an underlying bias within the text these were trained on. This research aims to identify what level of unfairness may lie within machine learned algorithms which utilize pre-trained word embeddings. We attempt to identify if our ability to predict scores for open response questions vary for different groups of student answers. For instance, whether a student who uses fractions as opposed to decimals. By performing a simulated study, we are able to identify the potential unfairness within our machine learned models with pre-trained word embeddings.more » « less