Gas bubbles bursting at the sea surface produce drops, which contribute to marine aerosols. The contamination or enrichment of water by surface‐active agents, of biological or anthropogenic origin, has long been recognized as affecting the bubble bursting processes and the spray composition. However, despite an improved understanding of the physics of a single bursting event, a quantitative understanding of the role of the physico‐chemical conditions on assemblies of bursting bubbles remains elusive. We present experiments on the drop production by millimetric, collective bursting bubbles, under varying surfactant concentration and bubble density. We demonstrate that the production of supermicron droplets (with radius larger than 35 μm) is non‐monotonic as the surfactant concentration increases. The bursting efficiency is optimal for short‐lived, sparsely distributed and non‐coalescing bubbles. We identify the combined role of contamination on the surface bubble arrangement and the modification of the jet drop production process in the bursting efficiency.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Erinin, M. A. (3)
-
Deike, L. (2)
-
Néel, B. (2)
-
Duncan, J. H. (1)
-
Jaquette, R. D. (1)
-
Liu, R. (1)
-
Liu, X. (1)
-
Mazzatenta, M. (1)
-
Ruth, D. J. (1)
-
Towle, D. (1)
-
Veron, F. (1)
-
Wang, S. D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Erinin, M. A. ; Néel, B. ; Ruth, D. J. ; Mazzatenta, M. ; Jaquette, R. D. ; Veron, F. ; Deike, L. ( , Geophysical Research Letters)
Abstract Laboratory measurements of droplet size, velocity, and accelerations generated by mechanically and wind‐forced water breaking waves are reported. The wind free stream velocity is up to 12 m/s, leading to wave slopes from 0.15 to 0.35 at a fetch of 23 m. The ratio of wind free stream and wave phase speed ranges from 5.9 to 11.1, depending on the mechanical wave frequency. The droplet size distribution in all configurations can be represented by two power laws,
N (d ) ∝d −1for drops from 30 to 600 μm andN (d ) ∝d −4above 600 μm. The horizontal and vertical droplet velocities appear correlated, with drops with slower horizontal speed more likely to move upward. The velocity and acceleration distributions are found to be asymmetric, with the velocity probability density functions (PDFs) being described by a normal‐inverse‐Gaussian distribution. The horizontal acceleration PDF are found to follow a shape close to the one predicted for small particles in homogeneous and isotropic turbulence, while the vertical distribution follows an asymmetric normal shape, showing that both acceleration components are controlled by different physical processes. -
Erinin, M. A. ; Wang, S. D. ; Liu, R. ; Towle, D. ; Liu, X. ; Duncan, J. H. ( , Geophysical Research Letters)
Abstract An experimental investigation of droplet generation by a plunging breaking wave is presented. In this work, simultaneous measurements of the wave crest profile evolution and of droplets ranging in radius down to 50 μm for a mechanically generated plunging breaker during many repeated breaking events in freshwater are performed. We find three distinct time zones of droplet production, first when the jet impacts the free surface upstream of the wave crest, second when the large air bubbles entrapped by the plunging jet impact reach the free surface and burst, and third when smaller bubbles burst upon reaching the free surface later in the breaking process. These subprocesses account for 22%, 44%, and 34%, respectively, of the average of 653 droplets produced per breaking event. The probability distributions of the ranges of large and small droplet radii are well represented by power law functions that intersect at a radius of 418 μm.