skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Erkal, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We use data from the Magellanic Edges Survey (MagES) in combination with Gaia EDR3 to study the extreme southern outskirts of the Small Magellanic Cloud (SMC), focussing on a field at the eastern end of a long arm-like structure which wraps around the southern periphery of the Large Magellanic Cloud (LMC). Unlike the remainder of this structure, which is thought to be comprised of perturbed LMC disc material, the aggregate properties of the field indicate a clear connection with the SMC. We find evidence for two stellar populations in the field: one having properties consistent with the outskirts of the main SMC body, and the other significantly perturbed. The perturbed population is on average ∼0.2 dex more metal-rich, and is located ∼7 kpc in front of the dominant population with a total space velocity relative to the SMC centre of ∼230 km s−1 broadly in the direction of the LMC. We speculate on possible origins for this perturbed population, the most plausible of which is that it comprises debris from the inner SMC that has been recently tidally stripped by interactions with the LMC.

     
    more » « less
  2. Abstract We present the discovery of DELVE 6, an ultra-faint stellar system identified in the second data release of the DECam Local Volume Exploration (DELVE) survey. Based on a maximum-likelihood fit to its structure and stellar population, we find that DELVE 6 is an old ( τ > 9.8 Gyr at 95% confidence) and metal-poor ([Fe/H] < −1.17 dex at 95% confidence) stellar system with an absolute magnitude of M V = − 1.5 − 0.6 + 0.4 mag and an azimuthally averaged half-light radius of r 1 / 2 = 10 − 3 + 4 pc. These properties are consistent with the population of ultra-faint star clusters uncovered by recent surveys. Interestingly, DELVE 6 is located at an angular separation of ∼10° from the center of the Small Magellanic Cloud (SMC), corresponding to a 3D physical separation of ∼20 kpc given the system’s observed distance ( D ⊙ = 80 kpc). This also places the system ∼35 kpc from the center of the Large Magellanic Cloud (LMC), lying within recent constraints on the size of the LMC’s dark matter halo. We tentatively measure the proper motion of DELVE 6 using data from Gaia, which we find supports a potential association between the system and the LMC/SMC. Although future kinematic measurements will be necessary to determine its origins, we highlight that DELVE 6 may represent only the second or third ancient ( τ > 9 Gyr) star cluster associated with the SMC, or one of fewer than two dozen ancient clusters associated with the LMC. Nonetheless, we cannot currently rule out the possibility that the system is a distant Milky Way halo star cluster. 
    more » « less
  3. ABSTRACT

    We explore the structural and kinematic properties of the outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. Even at large galactocentric radii (8° < R < 11°), we find the north-eastern LMC disc is relatively unperturbed: its kinematics are consistent with a disc of inclination ∼36.5° and line-of-nodes position angle ∼145° east of north. In contrast, fields at similar radii in the southern and western disc are significantly perturbed from equilibrium, with non-zero radial and vertical velocities, and distances significantly in front of the disc plane implied by our north-eastern fields. We compare our observations to simple dynamical models of the Magellanic or Milky Way system which describe the LMC as a collection of tracer particles within a rigid potential, and the Small Magellanic Cloud (SMC) as a rigid Hernquist potential. A possible SMC crossing of the LMC disc plane ∼400 Myr ago, in combination with the LMC’s infall to the Milky Way potential, can qualitatively explain many of the perturbations in the outer disc. Additionally, we find the claw-like and arm-like structures south of the LMC have similar metallicities to the outer LMC disc ([Fe/H] ∼ −1), and are likely comprised of perturbed LMC disc material. The claw-like substructure is particularly disturbed, with out-of-plane velocities >60 km s−1 and apparent counter-rotation relative to the LMC’s disc motion. More detailed N-body models are necessary to elucidate the origin of these southern features, potentially requiring repeated interactions with the SMC prior to ∼1 Gyr ago.

     
    more » « less
  4. ABSTRACT

    The highly-substructured outskirts of the Magellanic Clouds provide ideal locations for studying the complex interaction history between both Clouds and the Milky Way (MW). In this paper, we investigate the origin of a >20° long arm-like feature in the northern outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. We find that the arm has a similar geometry and metallicity to the nearby outer LMC disc, indicating that it is comprised of perturbed disc material. Whilst the azimuthal velocity and velocity dispersions along the arm are consistent with those in the outer LMC, the in-plane radial velocity and out-of-plane vertical velocity are significantly perturbed from equilibrium disc kinematics. We compare these observations to a new suite of dynamical models of the Magellanic/MW system, which describe the LMC as a collection of tracer particles within a rigid potential, and the SMC as a rigid Hernquist potential. Our models indicate the tidal force of the MW during the LMC’s infall is likely responsible for the observed increasing out-of-plane velocity along the arm. Our models also suggest close LMC/SMC interactions within the past Gyr, particularly the SMC’s pericentric passage ∼150 Myr ago and a possible SMC crossing of the LMC disc plane ∼400 Myr ago, likely do not perturb stars that today comprise the arm. Historical interactions with the SMC prior to ∼1 Gyr ago may be required to explain some of the observed kinematic properties of the arm, in particular its strongly negative in-plane radial velocity.

     
    more » « less
  5. Abstract We report the discovery of Pegasus IV, an ultra-faint dwarf galaxy found in archival data from the Dark Energy Camera processed by the DECam Local Volume Exploration Survey. Pegasus IV is a compact, ultra-faint stellar system ( r 1 / 2 = 41 − 6 + 8 pc; M V = −4.25 ± 0.2 mag) located at a heliocentric distance of 90 − 6 + 4 kpc . Based on spectra of seven nonvariable member stars observed with Magellan/IMACS, we confidently resolve Pegasus IV’s velocity dispersion, measuring σ v = 3.3 − 1.1 + 1.7 km s −1 (after excluding three velocity outliers); this implies a mass-to-light ratio of M 1 / 2 / L V , 1 / 2 = 167 − 99 + 224 M ⊙ / L ⊙ for the system. From the five stars with the highest signal-to-noise spectra, we also measure a systemic metallicity of [Fe/H] = − 2.63 − 0.30 + 0.26 dex, making Pegasus IV one of the most metal-poor ultra-faint dwarfs. We tentatively resolve a nonzero metallicity dispersion for the system. These measurements provide strong evidence that Pegasus IV is a dark-matter-dominated dwarf galaxy, rather than a star cluster. We measure Pegasus IV’s proper motion using data from Gaia Early Data Release 3, finding ( μ α * , μ δ ) = (0.33 ± 0.07, −0.21 ± 0.08) mas yr −1 . When combined with our measured systemic velocity, this proper motion suggests that Pegasus IV is on an elliptical, retrograde orbit, and is currently near its orbital apocenter. Lastly, we identify three potential RR Lyrae variable stars within Pegasus IV, including one candidate member located more than 10 half-light radii away from the system’s centroid. The discovery of yet another ultra-faint dwarf galaxy strongly suggests that the census of Milky Way satellites is still incomplete, even within 100 kpc. 
    more » « less
  6. null (Ed.)
    ABSTRACT We present an overview of, and first science results from, the Magellanic Edges Survey (MagES), an ongoing spectroscopic survey mapping the kinematics of red clump and red giant branch stars in the highly substructured periphery of the Magellanic Clouds. In conjunction with Gaia astrometry, MagES yields a sample of ~7000 stars with individual 3D velocities that probes larger galactocentric radii than most previous studies. We outline our target selection, observation strategy, data reduction, and analysis procedures, and present results for two fields in the northern outskirts (>10° on-sky from the centre) of the Large Magellanic Cloud (LMC). One field, located in the vicinity of an arm-like overdensity, displays apparent signatures of perturbation away from an equilibrium disc model. This includes a large radial velocity dispersion in the LMC disc plane, and an asymmetric line-of-sight velocity distribution indicative of motions vertically out of the disc plane for some stars. The second field reveals 3D kinematics consistent with an equilibrium disc, and yields Vcirc = 87.7 ± 8.0 km s−1 at a radial distance of ~10.5 kpc from the LMC centre. This leads to an enclosed mass estimate for the LMC at this radius of (1.8 ± 0.3) × 1010 M⊙. 
    more » « less
  7. null (Ed.)
  8. Abstract

    We perform a detailed photometric and astrometric analysis of stars in the Jet stream using data from the first data release of the DECam Local Volume Exploration Survey DR1 and Gaia EDR3. We discover that the stream extends over ∼ 29° on the sky (increasing the known length by 18°), which is comparable to the kinematically cold Phoenix, ATLAS, and GD-1 streams. Using blue horizontal branch stars, we resolve a distance gradient along the Jet stream of 0.2 kpc deg−1, with distances ranging fromD∼ 27–34 kpc. We use natural splines to simultaneously fit the stream track, width, and intensity to quantitatively characterize density variations in the Jet stream, including a large gap, and identify substructure off the main track of the stream. Furthermore, we report the first measurement of the proper motion of the Jet stream and find that it is well aligned with the stream track, suggesting the stream has likely not been significantly perturbed perpendicular to the line of sight. Finally, we fit the stream with a dynamical model and find that it is on a retrograde orbit, and is well fit by a gravitational potential including the Milky Way and Large Magellanic Cloud. These results indicate the Jet stream is an excellent candidate for future studies with deeper photometry, astrometry, and spectroscopy to study the potential of the Milky Way and probe perturbations from baryonic and dark matter substructure.

     
    more » « less