Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
- (Ed.)Abstract Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms. In memoriam, to Neil Ashcroft, who inspired us all.more » « less
-
Abstract Previous band structure calculations predicted Ag3AuSe2to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2and its transport and optical properties. Single crystals of Ag3AuSe2were synthesized by slow‐cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transport measurements reveal that Ag3AuSe2is a highly resistive semiconductor with a band gap and activation energy around 0.3 eV. Our first‐principles calculations show that the experimentally determined band gap lies between the predicted band gaps from GGA and hybrid functionals. We predict band inversion to be possible by applying tensile strain. The sensitivity of the gap to Ag/Au ordering, chemical substitution, and heat treatment merit further investigation.more » « less
-
Abstract The biaxial van der Waals semiconductor α‐phase molybdenum trioxide (α‐MoO3) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs)—infrared (IR) light coupled to lattice vibrations—offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, the accurate IR dielectric function of α‐MoO3is reported by modeling far‐field polarized IR reflectance spectra acquired on a single thick flake of this material. Unique to this work, the far‐field model is refined by contrasting the experimental dispersion and damping of PhPs, revealed by polariton interferometry using scattering‐type scanning near‐field optical microscopy (s‐SNOM) on thin flakes of α‐MoO3, with analytical and transfer‐matrix calculations, as well as full‐wave simulations. Through these correlative efforts, exceptional quantitative agreement is attained to both far‐ and near‐field properties for multiple flakes, thus providing strong verification of the accuracy of this model, while offering a novel approach to extracting dielectric functions of nanomaterials. In addition, by employing density functional theory (DFT), insights into the various vibrational states dictating the dielectric function model and the intriguing optical properties of α‐MoO3are provided.more » « less
An official website of the United States government
