ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 andbeam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to befor thesetting andfor thesetting.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Published by the American Physical Society 2024 Free, publicly-accessible full text available November 1, 2025 -
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Abstract A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV ≡ 10 18 eV). Despite the flux of these particles being extremely low, the area of ∼3000 km 2 covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase 1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultra-high-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km 2 sr yr, and search it for anisotropies over the 3.4 π steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with ∼15° Gaussian spread or ∼25° top-hat radius, is obtained at the 4 σ significance level for cosmic-ray energies above ∼40 EeV.more » « less
-
Abstract Ultra-high-energy photons with energies exceeding 10 17 eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10 15 eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 10 17 eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 10 17 and 10 18 eV.more » « less
-
Abstract We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays.more » « less