skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Esposito, Raffaele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Taking place naturally in a gas subject to a given wall temperature distribution, the “ghost effect” exhibits a rare kinetic effect beyond the prediction of classical fluid theory and Fourier law in such a classical problem in physics. As the Knudsen number goes to zero, the finite variation of temperature in the bulk is determined by an infinitesimal, ghost‐like velocity field, created by a givenfinitevariation of the tangential wall temperature as predicted by Maxwell's slip boundary condition. Mathematically, such a finite variation leads to the presence of a severe singularity and a Knudsen layer approximation in the fundamental energy estimate. Neither difficulty is within the reach of any existing PDE theory on the steady Boltzmann equation in a general 3D bounded domain. Consequently, in spite of the discovery of such a ghost effect from temperature variation in as early as 1960s, its mathematical validity has been a challenging and intriguing open question, causing confusion and suspicion. We settle this open question in affirmative if the temperature variation is small but finite, by developing a new framework with four major innovations as follows: (1) a key ‐Hodge decomposition and its corresponding local ‐conservation law eliminate the severe bulk singularity, leading to a reduced energy estimate; (2) a surprising gain in via momentum conservation and a dual Stokes solution; (3) the ‐conservation, energy conservation, and a coupled dual Stokes–Poisson solution reduces to an boundary singularity; (4) a crucial construction of ‐cutoff boundary layer eliminates such boundary singularity via new Hardy's and BV estimates. 
    more » « less
    Free, publicly-accessible full text available October 15, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Abstract Despite its conceptual and practical importance, a rigorous derivation of the steady incompressible Navier–Stokes–Fourier system from the Boltzmann theory has been an outstanding open problem for general domains in 3D. We settle this open question in the affirmative, in the presence of a small external field and a small boundary temperature variation for the diffuse boundary condition.We employ a recent quantitative L2–L∞ approach with new L6 estimates for the hydrodynamic part P f of the distribution function. Our results also imply the validity of Fourier law in the hydrodynamical limit, and our method leads to an asymptotic stability of steady Boltzmann solutions as well as the derivation of the unsteady Navier–Stokes–Fourier system. 
    more » « less