Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The observation of transient gravitational waves (GWs) is hindered by the presence of transient noise, colloquially referred to as glitches. These glitches can often be misidentified as GWs by searches for unmodeled transients using the excess-power type of methods and sometimes even excite template waveforms for compact binary coalescences while using matched filter techniques. They thus create a significant background in the searches. This background is more critical in getting identified promptly and efficiently within the context of real-time searches for GW transients. Such searches are the ones that have enabled multi-messenger astrophysics with the start of the Advanced LIGO and Advanced Virgo data taking in 2015 and they will continue to enable the field for further discoveries. With this work we propose and demonstrate the use of a signal-based test that quantifies the fidelity of the time-frequency decomposition of the putative signal based on first principles on how astrophysical transients are expected to be registered in the detectors and empirically measuring the instrumental noise. It is based on the Q-transform and a measure of the occupancy of the corresponding time-frequency pixels over select time-frequency volumes; we call it ‘QoQ’. Our method shows a 40% reduction in the number of retraction of public alerts that were issued by the LIGO-Virgo-KAGRA collaborations during the third observing run with negligible loss in sensitivity. Receiver Operator Characteristic measurements suggest the method can be used in online and offline searches for transients, reducing their background significantly.
Free, publicly-accessible full text available December 1, 2024 -
Abstract We study tidal dissipation in hot Jupiter host stars due to the nonlinear damping of tidally driven
g -modes, extending the calculations of Essick & Weinberg to a wide variety of stellar host types. This process causes the planet’s orbit to decay and has potentially important consequences for the evolution and fate of hot Jupiters. Previous studies either only accounted for linear dissipation processes or assumed that the resonantly excited primary mode becomes strongly nonlinear and breaks as it approaches the stellar center. However, the great majority of hot Jupiter systems are in the weakly nonlinear regime in which the primary mode does not break but instead excites a sea of secondary modes via three-mode interactions. We simulate these nonlinear interactions and calculate the net mode dissipation for stars that range in mass from 0.5M ⊙≤M ⋆≤ 2.0M ⊙and in age from the early main sequence to the subgiant phase. We find that the nonlinearly excited secondary modes can enhance the tidal dissipation by orders of magnitude compared to linear dissipation processes. For the stars withM ⋆≲ 1.0M ⊙of nearly any age, we find that the orbital decay time is ≲100 Myr for orbital periodsP orb≲ 1 day. ForM ⋆≳ 1.2M ⊙, the orbital decay time only becomes short on the subgiant branch, where it can be ≲10 Myr forP orb≲ 2 days and result in significant transit time shifts. We discuss these results in the context of known hot Jupiter systems and examine the prospects for detecting their orbital decay with transit timing measurements. -
Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO’s, AdVirgo’s and KAGRA’s fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (−3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections.
Free, publicly-accessible full text available April 30, 2025 -
Abstract This review aims at providing an extensive discussion of modern constraints relevant for dense and hot strongly interacting matter. It includes theoretical first-principle results from lattice and perturbative QCD, as well as chiral effective field theory results. From the experimental side, it includes heavy-ion collision and low-energy nuclear physics results, as well as observations from neutron stars and their mergers. The validity of different constraints, concerning specific conditions and ranges of applicability, is also provided.
-
Abstract The Neutron Star Interior Composition Explorer (NICER) records exceptional data on pulsars’ energy-dependent X-ray pulse profiles. However, in searching for evidence of pulsations, Guillot et al. (2019) introduce a procedure to select an ordered subset of data that maximizes a detection statistic (the H-test). I show that this can degrade subsequent analyses using an idealized model with stationary expected count rates from both noise and signal. Specifically, the data-selection procedure biases the inferred mean count rate to be too low and the inferred pulsation amplitude to be too high, and the size of these biases scales strongly with the amount of data that is rejected and the true signal amplitude. The procedure also alters the H-test’s null distribution, rendering nominal significance estimates overly optimistic. While the idealized model does not capture all the complexities of real NICER data, it suggests that these biases could be important for NICER’s observations of J0740+6620 and other faint pulsars (observations of J0030+0451 are likely less affected). I estimate that these effects may introduce a bias of
on average in the inferred modulation depth of lightcurves like J0740+6620's, and may be as large as for fainter pulsars. However, the change for a single data set like J0740+6620 is expected to be a shift between −5% and +20%. This could imply that the lower limit on J0740+6620's radius is slightly larger than it should be, although preliminary investigations suggest the radius constraints shift to larger radii by with the same overall statistical precision using real J0740+6620 data. -
Abstract We search for features in the mass distribution of detected compact binary coalescences which signify the transition between neutron stars (NSs) and black holes (BHs). We analyze all gravitational-wave (GW) detections by the LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (LVK) made through the end of the first half of the third observing run, and find clear evidence for two different populations of compact objects based solely on GW data. We confidently (99.3%) find a steepening relative to a single power law describing NSs and low-mass BHs below
, which is consistent with many predictions for the maximum NS mass. We find suggestions of the purported lower mass gap between the most massive NSs and the least massive BHs, but are unable to conclusively resolve it with current data. If it exists, we find the lower mass gap’s edges to lie at and . We reexamine events that have been deemed “exceptional” by the LVK collaborations in the context of these features. We analyze GW190814 self-consistently in the context of the full population of compact binaries, finding support for its secondary to be either a NS or a lower mass gap object, consistent with previous claims. Our models are the first to accommodate this event, which is an outlier with respect to the binary BH population. We find that GW200105 and GW200115 probe the edges of, and may have components within, the lower mass gap. As future data improve global population models, the classification of these events will also improve.