skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Estroff, Lara_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor‐immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin‐typeO‐glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization‐dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone‐metastatic breast cancer. 
    more » « less
  2. Abstract Properties arising from ordered periodic mesostructures are often obscured by small, randomly oriented domains and grain boundaries. Bulk macroscopic single crystals with mesoscale periodicity are needed to establish fundamental structure–property correlations for materials ordered at this length scale (10–100 nm). A solvent‐evaporation‐induced crystallization method providing access to large (millimeter to centimeter) single‐crystal mesostructures, specifically bicontinuous gyroids, in thick films (>100 µm) derived from block copolymers is reported. After in‐depth crystallographic characterization of single‐crystal block copolymer–preceramic nanocomposite films, the structures are converted into mesoporous ceramic monoliths, with retention of mesoscale crystallinity. When fractured, these monoliths display single‐crystal‐like cleavage along mesoscale facets. The method can prepare macroscopic bulk single crystals with other block copolymer systems, suggesting that the method is broadly applicable to block copolymer materials assembled by solvent evaporation. It is expected that such bulk single crystals will enable fundamental understanding and control of emergent mesostructure‐based properties in block‐copolymer‐directed metal, semiconductor, and superconductor materials. 
    more » « less