- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Eve, Gabriel (2)
-
Han, Ke (2)
-
Friesz, Terry (1)
-
Friesz, Terry L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Han, Ke; Eve, Gabriel; Friesz, Terry (, Networks and spatial economics)Dynamic user equilibrium (DUE) is the most widely studied form of dynamic traffic assignment (DTA), in which road travelers engage in a non-cooperative Nash-like game with departure time and route choices. DUE models describe and predict the time-varying traffic flows on a network consistent with traffic flow theory and travel behavior. This paper documents theoretical and numerical advances in synthesizing traffic flow theory and DUE modeling, by presenting a holistic computational theory of DUE, which is numerically implemented in a MATLAB package. In particular, the dynamic network loading (DNL) sub-problem is formulated as a system of differential algebraic equations based on the Lighthill-Whitham-Richards fluid dynamic model, which captures the formation, propagation and dissipation of physical queues as well as vehicle spillback on networks. Then, the fixed-point algorithm is employed to solve the DUE problems with simultaneous route and departure time choices on several large-scale networks. We make openly available the MATLAB package, which can be used to solve DUE problems on user-defined networks, aiming to not only facilitate benchmarking a wide range of DUE algorithms and solutions, but also offer researchers a platform to further develop their own models and applications. The MATLAB package and computational examples are available online.more » « less
An official website of the United States government
