skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Everson, Kathryn M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hahn, Matthew (Ed.)
    Abstract Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting (ILS) and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and single nucleotide polymorphism-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that—except for three uncertain relationships—was robust to different strategies for analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand this genealogical variation, we used multiple linear regression to model site concordance factors estimated in 50-kb windows as a function of several genomic predictor variables. We found that site concordance factors tended to be higher in regions of the genome with more parsimony-informative sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and lower D-statistics (less introgression). Together, these results suggest that ILS, introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity across genomes. 
    more » « less
  2. In recent years, it has become widely accepted that interspecific gene flow is common across the Tree of Life. Questions remain about how species boundaries can be maintained in the face of high levels of gene flow and how phylogeneticists should account for reticulation in their analyses. The true lemurs of Madagascar (genus Eulemur, 12 species) provide a unique opportunity to explore these questions, as they form a recent radiation with at least five active hybrid zones. Here, we present new analyses of a mitochondrial dataset with hundreds of individuals in the genus Eulemur, as well as a nuclear dataset containing hundreds of genetic loci for a small number of individuals. Traditional coalescent-based phylogenetic analyses of both datasets reveal that not all recognized species are monophyletic. Using network-based approaches, we also find that a species tree containing between one and three ancient reticulations is supported by strong evidence. Together, these results suggest that hybridization has been a prominent feature of the genus Eulemur in both the past and present. We also recommend that greater taxonomic attention should be paid to this group so that geographic boundaries and conservation priorities can be better established. 
    more » « less
  3. Davis, Jeffrey (Ed.)
    Abstract Pine sawflies (Hymenoptera: Diprionidae) are eruptive herbivores found throughout eastern North America. The Diprionidae family, which contains at least 140 species, constitutes the most persistent threat to conifers as population outbreaks can cause widespread defoliation. Because some species are more prone to large, destructive outbreaks than others, species identification is critical to effective management. Although existing taxonomic keys are primarily based on internal adult morphology, substantial variation among species in larval color traits, geographic location, overwintering strategy, host plant, and egg patterns can be diagnostic at the species level. Here, we focus on the Pinaceae-feeding subfamily Diprioninae, of which there are 25 species in eastern North America. We describe the general biology, life cycle, and host-use ecology of Diprioninae, with an emphasis on the variation among these traits within this subfamily. In addition, we provide tools for species identification, including a taxonomic key that utilizes external diagnostic characteristics. Finally, we discuss available management strategies. 
    more » « less