skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ewing, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Computational hydrological models and simulations are fundamental pieces of the workflow of contemporary hydroscience research, education, and professional engineering activities. In support of hydrological modelling efforts, web-enabled tools for data processing, storage, computation, and visualization have proliferated. Most of these efforts rely on server resources for computation and data tasks and client-side resources for visualization. However, continued advancements of in-browser, client-side compute performance present an opportunity to further leverage client-side resources. Towards this end, we present an operational rainfall-runoff model and simulation engine running entirely on the client side using the JavaScript programming language. To demonstrate potential uses, we also present an easy-to-use in-browser interface designed for hydroscience education. Although the use case presented here is self-contained, the core technologies can extend to leverage multi-core processing on single machines and parallelization capabilities of multiple clients or JavaScript-enabled servers. These possibilities suggest that client-side hydrological simulation can play a central role in a dynamic, interconnected ecosystem of web-ready hydrological tools.

     
    more » « less
  2. null (Ed.)
    Abstract Sensors and control technologies are being deployed at unprecedented levels in both urban and rural water environments. Because sensor networks and control allow for higher-resolution monitoring and decision making in both time and space, greater discretization of control will allow for an unprecedented precision of impacts, both positive and negative. Likewise, humans will continue to cede direct decision-making powers to decision-support technologies, e.g. data algorithms. Systems will have ever-greater potential to effect human lives, and yet, humans will be distanced from decisions. Combined these trends challenge water resources management decision-support tools to incorporate the concepts of ethical and normative expectations. Toward this aim, we propose the Water Ethics Web Engine (WE)2, an integrated and generalized web framework to incorporate voting-based ethical and normative preferences into water resources decision support. We demonstrate this framework with a ‘proof-of-concept’ use case where decision models are learned and deployed to respond to flooding scenarios. Findings indicate that the framework can capture group ‘wisdom’ within learned models to use in decision making. The methodology and ‘proof-of-concept’ system presented here are a step toward building a framework to engage people with algorithmic decision making in cases where ethical preferences are considered. We share our framework and its cyber components openly with the research community. 
    more » « less
  3. null (Ed.)
    Abstract The global volume of digital data is expected to reach 175 zettabytes by 2025. The volume, variety and velocity of water-related data are increasing due to large-scale sensor networks and increased attention to topics such as disaster response, water resources management, and climate change. Combined with the growing availability of computational resources and popularity of deep learning, these data are transformed into actionable and practical knowledge, revolutionizing the water industry. In this article, a systematic review of literature is conducted to identify existing research that incorporates deep learning methods in the water sector, with regard to monitoring, management, governance and communication of water resources. The study provides a comprehensive review of state-of-the-art deep learning approaches used in the water industry for generation, prediction, enhancement, and classification tasks, and serves as a guide for how to utilize available deep learning methods for future water resources challenges. Key issues and challenges in the application of these techniques in the water domain are discussed, including the ethics of these technologies for decision-making in water resources management and governance. Finally, we provide recommendations and future directions for the application of deep learning models in hydrology and water resources. 
    more » « less