skip to main content

Search for: All records

Creators/Authors contains: "Exarhos, Annemarie L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to design quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Conductive and transparent coatings consisting of silver nanowires (AgNWs) are promising candidates for emerging flexible electronics applications. Coatings of aligned AgNWs offer unusual electronic and optical anisotropies, with potential for use in micro-circuits, antennas, and polarization sensors. Here we explore a microfluidics setup and flow-induced alignment mechanisms to create centimeter-scale highly conductive coatings of aligned AgNWs with order parameters reaching 0.84, leading to large electrical and optical anisotropies. By varying flow rates, we establish the relationship between the shear rate and the alignment and investigate possible alignment mechanisms. The angle-dependent sheet resistance of the aligned AgNW networks exhibits an electronic transport anisotropy of ∼10× while maintaining low resistivity (<50 Ω sq −1 ) in all directions. When illuminated, the aligned AgNW coatings exhibit angle- and polarization-dependent colors, and the polarized reflection anisotropy can be as large as 25. This large optical anisotropy is due to a combination of alignment, polarization response, and angle-dependent scattering of the aligned AgNWs. 
    more » « less
  4. Abstract

    Quantum emitters such as the diamond nitrogen-vacancy (NV) center are the basis for a wide range of quantum technologies. However, refraction and reflections at material interfaces impede photon collection, and the emitters’ atomic scale necessitates the use of free space optical measurement setups that prevent packaging of quantum devices. To overcome these limitations, we design and fabricate a metasurface composed of nanoscale diamond pillars that acts as an immersion lens to collect and collimate the emission of an individual NV center. The metalens exhibits a numerical aperture greater than 1.0, enabling efficient fiber-coupling of quantum emitters. This flexible design will lead to the miniaturization of quantum devices in a wide range of host materials and the development of metasurfaces that shape single-photon emission for coupling to optical cavities or route photons based on their quantum state.

    more » « less