- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
F_Fotso, Herbert (1)
-
George_Paulson, Kavalambramalil (1)
-
Terletska, Hanna (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigate how an external driving field can control the amount of extractable work from a quantum emitter, a two-level quantum system (TLS) interacting with a photonic environment. In this scenario, the TLS functions as a quantum battery, interacting with the photonic bath that discharges it while the control field recharges it. Ergotropy serves as our measure of the extractable work from the quantum system. We systematically analyze how the ergotropy of the system evolves as it interacts with the photonic bath under the control of either a continuous driving field or a periodic pulse sequence. The coherent and incoherent contributions to the total ergotropy for various initial states are calculated. The role of detuning between the driving field and the emission frequency of the TLS, as well as the initial state of the system in work extraction, are investigated for continuous and periodic pulse-driving fields. We show that detuning has little impact on work extraction for a system driven by a periodic sequence of instantaneous pulses. However, for a continuously driven system, as the system approaches its steady state, ergotropy increases with detuning increases.more » « lessFree, publicly-accessible full text available March 28, 2026
An official website of the United States government
