skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Fabbris, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the observation of an electronic reconstruction in dimensionally controlled ruthenate heterostructures synthesized by pulsed laser deposition. High structural and electronic quality of superlattices comprised of a single SrRuO3 layer inter-spaced with varying thicknesses of insulating SrTiO3 layers was verified by reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, reciprocal space mapping, and x-ray absorption spectroscopy. X-ray absorption spectroscopy evidences a confinement-driven evolution of the Ru electronic configuration from the d5L to the d4 state. Significant increases of the spin-orbit coupling are observed in connection with the configuration changes supporting recent works identifying large enhancement of the magnetic anisotropy. The growth of high quality two-dimensional confined ruthenate layers under precisely controlled environments highlights the potential to directly manipulate interlayer coupling and selectively perturb the electronic state in ruthenates in analogy to superconducting Sr2RuO4. 
    more » « less
    Free, publicly-accessible full text available December 2, 2025
  2. none (Ed.)
    The recent prediction that honeycomb lattices of Co2+ (3d7) ions could host dominant Kitaev interactions provides an exciting direction for exploration of new routes to stabilizing Kitaev’s quantum spin liquid in real materials. Na3Co2SbO6 has been singled out as a potential material candidate provided that spin and orbital moments couple into a Jeff = 1/2 ground state, and that the relative strength of trigonal crystal field and spin-orbit coupling acting on Co ions can be tailored. Using x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) experiments, alongside configuration interaction calculations, we confirm the counterintuitive positive sign of the trigonal crystal field acting on Co2+ ions and test the validity of the Jeff = 1/2 description of the electronic ground state. The results lend experimental support to recent theoretical predictions that a compression (elongation) of CoO6 octahedra along (perpendicular to) the trigonal axis would drive this cobaltate toward the Kitaev limit, assuming the Jeff = 1/2 character of the electronic ground state is preserved. 
    more » « less
  3. Abstract Understanding the interplay between the inherent disorder and the correlated fluctuating-spin ground state is a key element in the search for quantum spin liquids. H3LiIr2O6is considered to be a spin liquid that is proximate to the Kitaev-limit quantum spin liquid. Its ground state shows no magnetic order or spin freezing as expected for the spin liquid state. However, hydrogen zero-point motion and stacking faults are known to be present. The resulting bond disorder has been invoked to explain the existence of unexpected low-energy spin excitations, although data interpretation remains challenging. Here, we use resonant X-ray spectroscopies to map the collective excitations in H3LiIr2O6and characterize its magnetic state. In the low-temperature correlated state, we reveal a broad bandwidth of magnetic excitations. The central energy and the high-energy tail of the continuum are consistent with expectations for dominant ferromagnetic Kitaev interactions between dynamically fluctuating spins. Furthermore, the absence of a momentum dependence to these excitations are consistent with disorder-induced broken translational invariance. Our low-energy data and the energy and width of the crystal field excitations support an interpretation of H3LiIr2O6as a disordered topological spin liquid in close proximity to bond-disordered versions of the Kitaev quantum spin liquid. 
    more » « less
  4. null (Ed.)