skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Faigle, Eli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A dataset consisting of numerically simulated oceanic velocities and sea surface height changes, provided conjointly from Eulerian and Lagrangian points of view, is made available as cloud-optimized archives on a cloud storage platform for unrestricted access. The Eulerian component of the dataset comprises oceanic velocity components at 0 m and 15 m depth, as well as total and steric sea surface height changes, obtained at hourly time steps for one year, with an approximate horizontal resolution of 1/25 degree on an irregular global geographical spatial grid, from the HYbrid Coordinate Ocean Model. The Lagrangian component of the dataset comprises the trajectories of particles advected in the Eulerian velocity field of the model. The particles were advected forward and backward for 30 days from a regular 1/4 degree grid in order to achieve 60-day long trajectories at 0 m and 15 m depths, with start times separated by 30 days, in 11 releases. This integrated dataset may help to link Eulerian and Lagrangian observational perspectives. 
    more » « less
  2. A combined dataset on the Registry of Open Data on AWS of simulated ocean sea surface height, near-surface velocities, and particle trajectories from a global 1/25th degree HYbrid Coordinate Ocean Model (HYCOM) 1-year run. 
    more » « less