skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fainekos, Georgios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing deployment of robots alongside humans necessitates sophisticated communication and motion planning to ensure safety and task achievability in social navigation scenarios. Existing methods often rely heavily on historical data and extensive expert hand-coding, which limits their scalability and generalizability. This paper introduces a novel framework that models social navigation as a Markov Decision Process (MDP), utilizing Conditional Abstraction Trees (CATs) to learn dynamic abstract world representations and policies that focus on critical aspects of interaction. In the offline phase, the framework operates within a simulator, while in the online phase, it deploys the learned representations and policies in real-world scenarios for ongoing refinement and adaptation. Integral to our approach is a Dynamic Bayesian Network (DBN) based human sensor and belief model that accounts for humans’ imperfect perception to enhance the prediction of human motion. We evaluated our method through extensive simulations and user studies involving physical experiments, demonstrating its effectiveness in managing critical interactions and ensuring safety and task completion across various scenarios. 
    more » « less
    Free, publicly-accessible full text available September 27, 2026
  2. Multi-agent systems (MASs) consisting of a number of autonomous agents that communicate, coordinate, and jointly sense the environment to achieve complex missions can be found in a variety of applications such as robotics, smart cities, and internet-of-things applications. Modeling and monitoring MAS requirements to guarantee overall mission objectives, safety, and reliability is an important problem. Such requirements implicitly require reasoning about diverse sensing and communication modalities between agents, analysis of the dependencies between agent tasks, and the spatial or virtual distance between agents. To capture such rich MAS requirements, we model agent interactions via multiple directed graphs, and introduce a new logic –Spatio-Temporal Logic with Graph Operators(STL-GO). The key innovation in STL-GO are graph operators that enable us to reason about the number of agents along either the incoming or outgoing edges of the underlying interaction graph that satisfy a given property of interest; for example, the requirement that an agent should sense at least two neighboring agents whose task graphs indicate the ability to collaborate. We then propose novel distributed monitoring conditions for individual agents that use only local information to determine whether or not an STL-GO specification is satisfied. We compare the expressivity of STL-GO against existing spatio-temporal logic formalisms, and demonstrate the utility of STL-GO and our distributed monitors in a bike-sharing and a multi-drone case study. 
    more » « less
    Free, publicly-accessible full text available November 30, 2026
  3. Cyber-physical systems (CPS) designed in simulators, often consisting of multiple interacting agents (e.g., in multi-agent formations), behave differently in the real-world. We would like to verify these systems during runtime when they are deployed. Thus, we propose robust predictive runtime verification (RPRV) algorithms for: (1) general stochastic CPS under signal temporal logic (STL) tasks, and (2) stochastic multi-agent systems (MAS) under spatio-temporal logic tasks. The RPRV problem presents the following challenges: (1) there may not be sufficient data on the behavior of the deployed CPS, (2) predictive models based on design phase system trajectories may encounter distribution shift during real-world deployment, and (3) the algorithms need to scale to the complexity of MAS and be applicable to spatio-temporal logic tasks. To address these challenges, we assume knowledge of an upper bound on the statistical distance (in terms of anf-divergence) between the trajectory distributions of the system at deployment and design time. We are motivated by our prior work where we proposed an accurate and an interpretable RPRV algorithm for general CPS, which we here extend to the MAS setting and spatio-temporal logic tasks. Specifically, we use a learned predictive model to estimate the system behavior at runtime androbust conformal predictionto obtain probabilistic guarantees by accounting for distribution shifts. Building on our prior work, we perform robust conformal prediction over the robust semantics of spatio-temporal reach and escape logic (STREL) to obtain centralized RPRV algorithms for MAS. We empirically validate our results in a drone swarm simulator, where we show the scalability of our RPRV algorithms to MAS and analyze the impact of different trajectory predictors on the verification result. To the best of our knowledge, these are the first statistically valid algorithms for MAS under distribution shift. 
    more » « less
    Free, publicly-accessible full text available October 31, 2026
  4. Free, publicly-accessible full text available May 6, 2026
  5. Free, publicly-accessible full text available May 1, 2026
  6. Abstract This paper presents StarV, a new tool for verifying deep neural networks (DNNs) and learning-enabled Cyber-Physical Systems (Le-CPS) using the well-known star reachability. Distinguished from existing star-based verification tools such as NNV and NNENUM and others, StarV not only offers qualitative verification techniques using Star and ImageStar reachability analysis but is also the first tool to propose using ProbStar reachability for quantitative verification of DNNs with piecewise linear activation functions and Le-CPS. Notably, it introduces a novel ProbStar Temporal Logic formalism and associated algorithms, enabling the quantitative verification of DNNs and Le-CPS’s temporal behaviors. Additionally, StarV presents a novel SparseImageStar set representation and associated reachability algorithm that allows users to verify deep convolutional neural networks and semantic segmentation networks with more memory efficiency. StarV is evaluated in comparison with state-of-the-art in many challenging benchmarks. The experiments show that StarV outperforms existing tools in many aspects, such as timing performance, scalability, and memory consumption. 
    more » « less
  7. This article introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute therobustness, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion ofcontroller network dropout, where we approximate the NN controller in several timesteps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring complex spatio-temporal and sequential tasks ranging over thousands of timesteps. 
    more » « less