skip to main content

Search for: All records

Creators/Authors contains: "Faircloth, Brant C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rivers frequently delimit the geographic ranges of species in the Amazon Basin. These rivers also define the boundaries between genetic clusters within many species, yet river boundaries have been documented to break down in headwater regions where rivers are narrower. To explore the evolutionary implications of headwater contact zones in Amazonia, we examined genetic variation in the Blue-capped Manakin (Lepidothrix coronata), a species previously shown to contain several genetically and phenotypically distinct populations across the western Amazon Basin. We collected restriction site-associated DNA sequence data (RADcap) for 706 individuals and found that spatial patterns of genetic structure indicate several rivers, particularly the Amazon and Ucayali, are dispersal barriers for L. coronata. We also found evidence that genetic connectivity is elevated across several headwater regions, highlighting the importance of headwater gene flow for models of Amazonian diversification. The headwater region of the Ucayali River provided a notable exception to findings of headwater gene flow by harboring non-admixed populations of L. coronata on opposite sides of a < 1-km-wide river channel with a known dynamic history, suggesting that additional prezygotic barriers may be limiting gene flow in this region.

    more » « less
  2. Zetka, M (Ed.)
    Abstract The clapper rail (Rallus crepitans), of the family Rallidae, is a secretive marsh bird species that is adapted for high salinity habitats. They are very similar in appearance to the closely related king rail (R. elegans), but while king rails are limited primarily to freshwater marshes, clapper rails are highly adapted to tolerate salt marshes. Both species can be found in brackish marshes where they freely hybridize, but the distribution of their respective habitats precludes the formation of a continuous hybrid zone and secondary contact can occur repeatedly. This system, thus, provides unique opportunities to investigate the underlying mechanisms driving their differential salinity tolerance as well as the maintenance of the species boundary between the 2 species. To facilitate these studies, we assembled a de novo reference genome assembly for a female clapper rail. Chicago and HiC libraries were prepared as input for the Dovetail HiRise pipeline to scaffold the genome. The pipeline, however, did not recover the Z chromosome so a custom script was used to assemble the Z chromosome. We generated a near chromosome level assembly with a total length of 994.8 Mb comprising 13,226 scaffolds. The assembly had a scaffold N50 was 82.7 Mb, L50 of four, and had a BUSCO completeness score of 92%. This assembly is among the most contiguous genomes among the species in the family Rallidae. It will serve as an important tool in future studies on avian salinity tolerance, interspecific hybridization, and speciation. 
    more » « less
    Free, publicly-accessible full text available May 2, 2024
  3. Makhalanyane, Thulani P. (Ed.)
    One goal of marine microbiologists is to uncover the roles various microorganisms are playing in biogeochemical cycles. Success in this endeavor relies on differentiating groups of microbes and circumscribing their relationships. An early-diverging group (subclade V) of the most abundant bacterioplankton, SAR11, has recently been proposed as a separate lineage that does not share a most recent common ancestor. But beyond phylogenetics, little has been done to evaluate how these organisms compare with SAR11. Our work leverages dozens of new genomes to demonstrate the similarities and differences between subclade V and SAR11. In our analysis, we also establish that subclade V is synonymous with a group of bacteria established from 16S rRNA gene sequences, AEGEAN-169. Subclade V/AEGEAN-169 has clear metabolic distinctions from SAR11 and their shared traits point to remarkable convergent evolution if they do not share a most recent common ancestor. 
    more » « less
  4. Abstract

    The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.

    more » « less
  5. Abstract

    Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human‐mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human‐mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human‐mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human‐mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.

    more » « less
  6. Sethuraman, A (Ed.)
    Abstract Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10× linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates. 
    more » « less
  7. null (Ed.)
    A voucher is a permanently preserved specimen that is maintained in an accessible collection. In genomics, vouchers serve as the physical evidence for the taxonomic identification of genome assemblies. Unfortunately, the vast majority of vertebrate genomes stored in the GenBank database do not refer to voucher specimens. Here, we urge researchers generating new genome assemblies to deposit voucher specimens in accessible, permanent research collections, and to link these vouchers to publications, public databases, and repositories. We also encourage scientists to deposit voucher specimens in order to recognize the work of local field biologists and promote a diverse and inclusive knowledge base, and we recommend best practices for voucher deposition to prevent taxonomic errors and ensure reproducibility and legality in genetic studies. 
    more » « less