skip to main content

Search for: All records

Creators/Authors contains: "Falcke, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The imaging fidelity of the Event Horizon Telescope (EHT) is currently determined by its sparse baseline coverage. In particular, EHT coverage is dominated by long baselines, and is highly sensitive to atmospheric conditions and loss of sites between experiments. The limited short/mid-range baselines especially affect the imaging process, hindering the recovery of more extended features in the image. We present an algorithmic contingency for the absence of well-constrained short baselines in the imaging of compact sources, such as the supermassive black holes observed with the EHT. This technique enforces a specific second moment on the reconstructed image in the formmore »of a size constraint, which corresponds to the curvature of the measured visibility function at zero baseline. The method enables the recovery of information lost in gaps of the baseline coverage on short baselines and enables corrections of any systematic amplitude offsets for the stations giving short-baseline measurements present in the observation. The regularization can use historical source size measurements to constrain the second moment of the reconstructed image to match the observed size. We additionally show that a characteristic size can be derived from available short-baseline measurements, extrapolated from other wavelengths, or estimated without complementary size constraints with parameter searches. We demonstrate the capabilities of this method for both static and movie reconstructions of variable sources.« less
  2. In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super- massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glowing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einstein’s theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/submillimeter Arraymore »(ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents — and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime.« less
  3. Abstract Lorentz invariance violation (LIV) is often described by dispersion relations of the form E i 2  =  m i 2 + p i 2 +δ i,n E 2+n with delta different based on particle type i , with energy E , momentum p and rest mass m . Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the particles involved. Thus, the strongest constraints on the LIV coefficients δ i,n tend to come from the highest energies. At sufficiently high energies, photons produced by cosmic ray interactions as theymore »propagate through the Universe could be subluminal and unattenuated over cosmological distances. Cosmic ray interactions can also be modified and lead to detectable fingerprints in the energy spectrum and mass composition observed on Earth. The data collected at the Pierre Auger Observatory are therefore possibly sensitive to both the electromagnetic and hadronic sectors of LIV. In this article, we explore these two sectors by comparing the energy spectrum and the composition of cosmic rays and the upper limits on the photon flux from the Pierre Auger Observatory with simulations including LIV. Constraints on LIV parameters depend strongly on the mass composition of cosmic rays at the highest energies. For the electromagnetic sector, while no constraints can be obtained in the absence of protons beyond 10 19 eV, we obtain δ γ,0  > -10 -21 , δ γ,1  > -10 -40 eV -1 and δ γ,2  > -10 -58 eV -2 in the case of a subdominant proton component up to 10 20 eV. For the hadronic sector, we study the best description of the data as a function of LIV coefficients and we derive constraints in the hadronic sector such as δ had,0  < 10 -19 , δ had,1  < 10 -38 eV -1 and δ had,2  < 10 -57 eV -2 at 5σ CL.« less
    Free, publicly-accessible full text available January 1, 2023
  4. Abstract We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically andmore »systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays.« less
    Free, publicly-accessible full text available November 1, 2022
  5. null (Ed.)
  6. null (Ed.)