skip to main content

Search for: All records

Creators/Authors contains: "Falcone, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. The response of imaging atmospheric Cherenkov telescopes to incident γ -ray-initiated showers in the atmosphere changes as the telescopes age due to exposure to light and weather. These aging processes affect the reconstructed energies of the events and γ -ray fluxes. Aims. This work discusses the implementation of signal calibration methods for the Very Energetic Radiation Imaging Telescope Array System (VERITAS) to account for changes in the optical throughput and detector performance over time. Methods. The total throughput of a Cherenkov telescope is the product of camera-dependent factors, such as the photomultiplier tube gains and their quantum efficiencies, and the mirror reflectivity and Winston cone response to incoming radiation. This document summarizes different methods to determine how the camera gains and mirror reflectivity have evolved over time and how we can calibrate this changing throughput in reconstruction pipelines for imaging atmospheric Cherenkov telescopes. The implementation is validated against seven years of observations with the VERITAS telescopes of the Crab Nebula, which is a reference object in very-high-energy astronomy. Results. Regular optical throughput monitoring and the corresponding signal calibrations are found to be critical for the reconstruction of extensive air shower images. The proposed implementation is applied as a correctionmore »to the signals of the photomultiplier tubes in the telescope simulation to produce fine-tuned instrument response functions. This method is shown to be effective for calibrating the acquired γ -ray data and for recovering the correct energy of the events and photon fluxes. At the same time, it keeps the computational effort of generating Monte Carlo simulations for instrument response functions affordably low.« less
    Free, publicly-accessible full text available February 1, 2023
  2. Abstract HESS J0632+057 belongs to a rare subclass of binary systems that emit gamma rays above 100 GeV. It stands out for its distinctive high-energy light curve, which features a sharp “primary” peak and broader “secondary” peak. We present the results of contemporaneous observations by NuSTAR and VERITAS during the secondary peak between 2019 December and 2020 February, when the orbital phase ( ϕ ) is between 0.55 and 0.75. NuSTAR detected X-ray spectral evolution, while VERITAS detected TeV emission. We fit a leptonic wind-collision model to the multiwavelength spectra data obtained over the four NuSTAR and VERITAS observations, constraining the pulsar spin-down luminosity and the magnetization parameter at the shock. Despite long-term monitoring of the source from 2019 October to 2020 March, the MDM observatory did not detect significant variation in H α and H β line equivalent widths, an expected signature of Be-disk interaction with the pulsar. Furthermore, fitting folded Swift-XRT light-curve data with an intrabinary shock model constrained the orbital parameters, suggesting two orbital phases (at ϕ D = 0.13 and 0.37), where the pulsar crosses the Be-disk, as well as phases for the periastron ( ϕ 0 = 0.30) and inferior conjunction ( ϕ IFC =more »0.75). The broadband X-ray spectra with Swift-XRT and NuSTAR allowed us to measure a higher neutral hydrogen column density at one of the predicted disk-passing phases.« less
    Free, publicly-accessible full text available December 1, 2022
  3. High angular resolution observations at optical wavelengths provide valuable insights into stellar astrophysics, and enable direct measurements of fundamental stellar parameters and the probing of stellar atmospheres, circumstellar disks, the elongation of rapidly rotating stars and the pulsations of Cepheid variable stars. The angular size of most stars is of the order of one milliarcsecond or less, and to spatially resolve stellar disks and features at this scale requires an optical interferometer using an array of telescopes with baselines on the order of hundreds of metres. We report on the implementation of a stellar intensity interferometry system developed for the four VERITAS imaging atmospheric Cherenkov telescopes. The system was used to measure the angular diameter of the two sub-milliarcsecond stars β Canis Majoris and ϵ Orionis with a precision of greater than 5%. The system uses an offline approach in which starlight intensity fluctuations that are recorded at each telescope are correlated post observation. The technique can be readily scaled onto tens to hundreds of telescopes, providing a capability that has proven technically challenging to the current generation of optical amplitude interferometry observatories. This work demonstrates the feasibility of performing astrophysical measurements using imaging atmospheric Cherenkov telescope arrays as intensitymore »interferometers and shows the promise for integrating an intensity interferometry system within future observatories such as the Cherenkov Telescope Array.« less