skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fallin, Shayna_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This work presents Neural Optimization for Melting-temperature Enabled by Leveraging Translation (NOMELT), a novel approach for designing and ranking high-temperature stable proteins using neural machine translation. The model, trained on over 4 million protein homologous pairs from organisms adapted to different temperatures, demonstrates promising capability in targeting thermal stability. A designed variant of theDrosophila melanogasterEngrailed Homeodomain shows a melting temperature increase of 15.5 K. Furthermore, NOMELT achieves zero-shot predictive capabilities in ranking experimental melting and half-activation temperatures across a number of protein families. It achieves this without requiring extensive homology data or massive training datasets as do existing zero-shot predictors by specifically learning thermophilicity, as opposed to all natural variation. These findings underscore the potential of leveraging organismal growth temperatures in context-dependent design of proteins for enhanced thermal stability. 
    more » « less