skip to main content

Search for: All records

Creators/Authors contains: "Famiano, Michael A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report on the effects of strong magnetic fields on neutrino emission in the modified Urca process. We show that the effect of Landau levels on the various Urca pairs affects the neutrino emission spectrum and leads to an angular asymmetry in the neutrino emission. For low magnetic fields, the Landau levels have almost no effect on the cooling. However, as the field strength increases, the electron chemical potential increases resulting in a lower density at which Urca pairs can exist. For intermediate field strength, there is an interesting interference between the Landau level distribution and the Fermi distribution. For high enough field strength, the entire electron energy spectrum is eventually confined to a single Landau level producing dramatic spikes in the emission spectrum.

    more » « less
  2. Abstract We study the evolution of rapid neutron-capture process (r-process) isotopes in the galaxy. We analyze relative contributions from core-collapse supernovae (CCSNe), neutron star mergers, and collapsars under a range of astrophysical conditions and nuclear input data. Here we show that, although the r-process in each of these sites can lead to a similar (universal) elemental distribution, the detailed isotopic abundances can differ from one site to another. These differences may allow for the identification of which sources contributed to the early evolution of r-process material in the galaxy. Our simulations suggest that the early evolution was dominated by CCSNe and collapsar r-process nucleosynthesis. This conclusion may be testable if the next generation of observatories can deduce isotopic r-process abundances. 
    more » « less
  3. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Nucleosynthesis of iron-group elements in Type Ia supernovae is studied for single-degenerate models with the use of electron-capture rates updated with the new shell-model Hamiltonian in pf -shell. An over-production problem of neutron-rich iron-group isotopes compared with the solar abundances is now found to be suppressed within a factor of about twice for the updated weak rates. Effects of screening on nucleosynthesis are investigated for explosion models of fast deflagration and slow deflagration with delayed detonation. The e-capture rates are reduced by the screening, especially by the screening effects on the ions. The production yields of most neutron-rich isotopes such as 50 Ti, 54 Cr and 58 Fe are found to be suppressed most by the screening. The inclusion of the screening is desirable for precise evaluation of abundances of neutron-rich nuclides. 
    more » « less
  4. null (Ed.)
    ABSTRACT Since 7Li is easily destroyed in low temperatures, the surface lithium abundance decreases as stars evolve. This is supported by the lithium depletion observed in the atmosphere of most red giants. However, recent studies show that almost all of red clump stars have high lithium abundances A(Li) > −0.9, which are not predicted by the standard theory of the low-mass stellar evolution. In order to reconcile the discrepancy between the observations and the model, we consider additional energy loss channels that may come from physics beyond the Standard Model. A(Li) slightly increases near the tip of the red giant branch even in the standard model with thermohaline mixing because of the 7Be production by the Cameron–Fowler mechanism, but the resultant 7Li abundance is much lower than the observed values. We find that the production of 7Be becomes more active if there are additional energy loss channels, because themohaline mixing becomes more efficient and a heavier helium core is formed. 
    more » « less
  5. null (Ed.)