Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the problem of designing distributed collision-avoidance multi-agent control in large-scale environments with potentially moving obstacles, where a large number of agents are required to maintain safety using only local information and reach their goals. This paper addresses the problem of collision avoidance, scalability, and generalizability by introducing graph control barrier functions (GCBFs) for distributed control. The newly introduced GCBF is based on the well-established CBF theory for safety guarantees but utilizes a graph structure for scalable and generalizable decentralized control. We use graph neural networks to learn both neural a GCBF certificate and distributed control. We also extend the framework from handling state-based models to directly taking point clouds from LiDAR for more practical robotics settings. We demonstrated the efficacy of GCBF in a variety of numerical experiments, where the number, density, and traveling distance of agents, as well as the number of unseen and uncontrolled obstacles increase. Empirical results show that GCBF outperforms leading methods such as MAPPO and multi-agent distributed CBF (MDCBF). Trained with only 16 agents, GCBF can achieve up to 3 times improvement of success rate (agents reach goals and never encountered in any collisions) on <500 agents, and still maintain more than 50 success rates for >1000 agents when other methods completely fail.more » « less
-
null (Ed.)We introduce a mathematical modeling framework for the conformational dynamics of charged molecules (i.e., solutes) in an aqueous solvent (i.e., water or salted water). The solvent is treated as an incompressible fluid, and its fluctuating motion is described by the Stokes equation with the Landau–Lifschitz stochastic stress. The motion of the solute-solvent interface (i.e., the dielectric boundary) is determined by the fluid velocity together with the balance of the viscous force,hydrostatic pressure, surface tension, solute-solvent van der Waals interaction force, and electrostatic force. The electrostatic interactions are described by the dielectric Poisson–Boltzmann theory.Within such a framework, we derive a generalized Rayleigh–Plesset equation, a nonlinear stochastic ordinary differential equation (SODE), for the radius of a spherical charged molecule, such as anion. The spherical average of the stochastic stress leads to a multiplicative noise. We design and test numerical methods for solving the SODE and use the equation, together with explicit solvent molecular dynamics simulations, to study the effective radius of a single ion. Potentially, our general modeling framework can be used to efficiently determine the solute-solvent interfacial structures and predict the free energies of more complex molecular systems.more » « less
-
null (Ed.)We develop a hybrid approach that combines the Monte Carlo (MC)method, a variational implicit-solvent model (VISM), and a binary level-set method forthe simulation of biomolecular binding in an aqueous solvent. The solvation free energy for the biomolecular complex is estimated by minimizing the VISM free-energy functional of all possible solute−solvent interfaces that are used as dielectric boundaries. This functional consists of the solute volumetric, solute−solvent interfacial, solute−solvent van der Waals interaction, and electrostatic free energy. A technique of shifting the dielectric boundary is used to accurately predict the electrostatic part of the solvation free energy.Minimizing such a functional in each MC move is made possible by our new and fast binary level-set method. This method is based on the approximation of surface area by the convolution of an indicator function with a compactly supported kernel and is implemented by simple flips of numerical grid cells locally around the solute−solvent interface. We apply our approach to the p53-MDM2 system for which the two molecules are approximated by rigid bodies. Our efficient approach captures some of the poses before the final bound state. All atom molecular dynamics simulations with most of such poses quickly reach the final bound state.Our work is a new step toward realistic simulations of biomolecular interactions. With further improvement of coarse graining and MC sampling, and combined with other models, our hybrid approach can be used to study the free-energy landscape and kinetic pathways of ligand binding to proteins.more » « less
-
Abstract SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds.more » « less
-
Free, publicly-accessible full text available September 1, 2026
An official website of the United States government

Full Text Available