skip to main content

Search for: All records

Creators/Authors contains: "Fan, Zichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deconvolution is a key component in contemporary neural networks, especially generative adversarial networks (GANs) and fully convolutional networks (FCNs). Due to extra operations of deconvolution compared to convolution, considerable degradation of performance as well as energy efficiency is incurred when implementing deconvolution on the existing resistive random access memory (ReRAM)-based processing-in-memory (PIM) accelerators. In this work, we propose a ReRAM-based accelerator design, RED, for providing high-performance and low-energy deconvolution. We analyze the deconvolution execution on the existing ReRAM-based PIMs and utilize its interior computation pattern for design optimization. RED includes two major contributions: pixel-wise mapping scheme and zero-skipping data flow. Pixel-wise mapping scheme removes the zero insertion and performs convolutions over several ReRAM arrays and thus enables parallel computations with non-zero inputs. Zero-skipping data flow, assisted with customized input buffers design, enhances the computation parallelism and input data reuse. In evaluation, we compare RED against the existing ReRAM-based PIMs and CMOS-based counterpart with a variety of GAN and FCN models, each of which contains multiple deconvolution layers. The experimental results show that RED achieves a 4.0×-56.16× speedup and a 1.05×-18.17× energy efficiency improvement over previous related accelerator designs. 
    more » « less