skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Fang, Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Broadband quantum memory is critical to enabling the operation of emerging photonic quantum technology at high speeds. Here we review a central challenge to achieving broadband quantum memory in atomic ensembles—what we call the ‘linewidth-bandwidth mismatch’ problem—and the relative merits of various memory protocols and hardware used for accomplishing this task. We also review the theory underlying atomic ensemble quantum memory and its extensions to optimizing memory efficiency and characterizing memory sensitivity. Finally, we examine the state-of-the-art performance of broadband atomic ensemble quantum memories with respect to three key metrics: efficiency, memory lifetime, and noise. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. The Apalachicola–Chattahoochee–Flint (ACF) basin is arguably the most litigated interstate river system in the eastern United States. Given the complicated demands for water use within this basin, it has been difficult to ascertain if the recent multi-decadal decline in streamflow is a product of human disturbance, changing climate, natural variability, or some combination of the above factors. To overcome these challenges, we examined unimpaired streamflow and precipitation within and adjacent to the ACF basin, upstream of the Apalachicola River at Chattahoochee, and the Florida streamflow station (ARCF), which has historically been identified to be representative of hydrologic variability in the ACF basin. Several of the upstream, unimpaired, streamflow stations selected were identified in rural watersheds where land-cover changes and human disturbance were minimal during the study period. When applying a series of statistical evaluations, ARCF streamflow variability generally reflects the natural variability of the ACF basin. Additionally, unimpaired streamflow variability from the neighboring Choctawhatchee River compared favorably with ARCF variability. The recent multi-decadal decline was consistent in all records, with the 2000s being the most severe in the historic record. 
    more » « less
  3. The angle dependence of field-induced switching was investigated in magnetic tunnel junctions with in-plane magnetization and a pinned synthetic antiferromagnet reference layer. The 60 × 90 nm2 elliptical nanopillars had sharp single switches when the field was applied along the major axis of the ellipse, but even with small (20°) deviations, reversal occurred through an intermediate state. The results are interpreted with a model that includes the external applied field and the effective fields due to shape anisotropy and the fringe field of the synthetic antiferromagnet and used to extract the magnetization direction at various points in the magnetoresistance loop. The implications for faster spintronic probabilistic computing devices are discussed. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Giant spin-orbit torque (SOT) from topological insulators (TIs) provides an energy efficient writing method for magnetic memory, which, however, is still premature for practical applications due to the challenge of the integration with magnetic tunnel junctions (MTJs). Here, we demonstrate a functional TI-MTJ device that could become the core element of the future energy-efficient spintronic devices, such as SOT-based magnetic random-access memory (SOT-MRAM). The state-of-the-art tunneling magnetoresistance (TMR) ratio of 102% and the ultralow switching current density of 1.2 × 105 A cm−2have been simultaneously achieved in the TI-MTJ device at room temperature, laying down the foundation for TI-driven SOT-MRAM. The charge-spin conversion efficiencyθSHin TIs is quantified by both the SOT-induced shift of the magnetic switching field (θSH = 1.59) and the SOT-induced ferromagnetic resonance (ST-FMR) (θSH = 1.02), which is one order of magnitude larger than that in conventional heavy metals. These results inspire a revolution of SOT-MRAM from classical to quantum materials, with great potential to further reduce the energy consumption.

    more » « less
  6. null (Ed.)