Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

This paper studies the unsupervised crossdomain translation problem by proposing a generative framework, in which the probability distribution of each domain is represented by a generative cooperative network that consists of an energy based model and a latent variable model. The use of generative cooperative network enables maximum likelihood learning of the domain model by MCMC teaching, where the energybased model seeks to fit the data distribution of domain and distills its knowledge to the latent variable model via MCMC. Specifically, in the MCMC teaching process, the latent variable model parameterized by an encoderdecoder maps examples from the source domain to the target domain, while the energybased model further refines the mapped results by Langevin revision such that the revised results match to the examples in the target domain in terms of the statistical properties, which are defined by the learned energy function. For the purpose of building up a correspondence between two unpaired domains, the proposed framework simultaneously learns a pair of cooperative networks with cycle consistency, accounting for a twoway translation between two domains, by alternating MCMC teaching. Experiments show that the proposed framework is useful for unsupervised imagetoimage translation and unpaired image sequence translation.more » « less

ABSTRACT We present an alternative calibration of the MagLim lens sample redshift distributions from the Dark Energy Survey (DES) first 3 yr of data (Y3). The new calibration is based on a combination of a selforganizingmapbased scheme and clustering redshifts to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology, and validate it on simulations and discuss the main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 n(z) calibration, with only mild differences (<3σ) in the means and widths of the distributions. We study the impact of this new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy–galaxy lensing measurements, assuming a Lambda cold dark matter cosmology. We obtain Ωm = 0.30 ± 0.04, σ8 = 0.81 ± 0.07, and S8 = 0.81 ± 0.04, which implies a ∼0.4σ shift in the Ω − S8 plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the lens sample in multiprobe cosmological analyses.

ABSTRACT The fiducial cosmological analyses of imaging surveys like DES typically probe the Universe at redshifts z < 1. We present the selection and characterization of highredshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around z ∼ 0.9, 1.2, and 1.5, which extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and highquality redshift samples, and we develop a machinelearning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal to noise S/N ∼ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe Ωm and the Hubble parameter h, $\Omega _m h = 0.195^{+0.023}_{0.018}$, and 2–3 per cent measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, bσ8. A companion paper (in preparation) will present the crosscorrelations of these highz samples with cosmic microwave background lensing from Planck and South Pole Telescope, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.

Free, publiclyaccessible full text available October 20, 2024

ABSTRACT We study the effect of magnification in the Dark Energy Survey Year 3 analysis of galaxy clustering and galaxy–galaxy lensing, using two different lens samples: a sample of luminous red galaxies, redMaGiC, and a sample with a redshiftdependent magnitude limit, MagLim. We account for the effect of magnification on both the flux and size selection of galaxies, accounting for systematic effects using the Balrog image simulations. We estimate the impact of magnification on the galaxy clustering and galaxy–galaxy lensing cosmology analysis, finding it to be a significant systematic for the MagLim sample. We show cosmological constraints from the galaxy clustering autocorrelation and galaxy–galaxy lensing signal with different magnifications priors, finding broad consistency in cosmological parameters in ΛCDM and wCDM. However, when magnification bias amplitude is allowed to be free, we find the twopoint correlation functions prefer a different amplitude to the fiducial input derived from the image simulations. We validate the magnification analysis by comparing the crossclustering between lens bins with the prediction from the baseline analysis, which uses only the autocorrelation of the lens bins, indicating that systematics other than magnification may be the cause of the discrepancy. We show that adding the crossclustering between lens redshift bins to the fit significantly improves the constraints on lens magnification parameters and allows uninformative priors to be used on magnification coefficients, without any loss of constraining power or prior volume concerns.

ABSTRACT Recent cosmological analyses with largescale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model nonlinearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three twopoint correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the nonlocality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Ytransformation, the pointmass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like setup and also when applied to DES Y3 data. With the LSST Y1 setup, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.

Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)Experimental studies on astrophysical reactions involving radioactive isotopes (RI) often accompany technical challenges. Studies on such nuclear reactions have been conducted at the lowenergy RI beam separator CRIB, operated by Center for Nuclear Study, the University of Tokyo. We discuss two cases of astrophysical reaction studies at CRIB; one is for the 7 Be+ n reactions which may affect the primordial 7 Li abundance in the BigBang nucleosynthesis, and the other is for the 22 Mg( α , p ) reaction relevantin Xraybursts.more » « less

ABSTRACT We perform a cosmic shear analysis in harmonic space using the first year of data collected by the Dark Energy Survey (DESY1). We measure the cosmic weak lensing shear power spectra using the metacalibration catalogue and perform a likelihood analysis within the framework of CosmoSIS. We set scale cuts based on baryonic effects contamination and model redshift and shear calibration uncertainties as well as intrinsic alignments. We adopt as fiducial covariance matrix an analytical computation accounting for the mask geometry in the Gaussian term, including nonGaussian contributions. A suite of 1200 lognormal simulations is used to validate the harmonic space pipeline and the covariance matrix. We perform a series of stress tests to gauge the robustness of the harmonic space analysis. Finally, we use the DESY1 pipeline in configuration space to perform a similar likelihood analysis and compare both results, demonstrating their compatibility in estimating the cosmological parameters S8, σ8, and Ωm. We use the DESY1 metacalibration shape catalogue, with photometric redshifts estimates in the range of 0.2−1.3, divided in four tomographic bins finding σ8(Ωm/0.3)0.5 = 0.766 ± 0.033 at 68 per cent CL. The methods implemented and validated in this paper will allow us to perform a consistent harmonic space analysis in the upcoming DES data.more » « less

Free, publiclyaccessible full text available April 1, 2024