Environmental and anthropogenic factors affect the population dynamics of migratory species throughout their annual cycles. However, identifying the spatiotemporal drivers of migratory species' abundances is difficult because of extensive gaps in monitoring data. The collection of unstructured opportunistic data by volunteer (citizen science) networks provides a solution to address data gaps for locations and time periods during which structured, design‐based data are difficult or impossible to collect. To estimate population abundance and distribution at broad spatiotemporal extents, we developed an integrated model that incorporates unstructured data during time periods and spatial locations when structured data are unavailable. We validated our approach through simulations and then applied the framework to the eastern North American migratory population of monarch butterflies during their spring breeding period in eastern Texas. Spring climate conditions have been identified as a key driver of monarch population sizes during subsequent summer and winter periods. However, low monarch densities during the spring combined with very few design‐based surveys in the region have limited the ability to isolate effects of spring weather variables on monarchs. Simulation results confirmed the ability of our integrated model to accurately and precisely estimate abundance indices and the effects of covariates during locations and time periods in which structured sampling are lacking. In our case study, we combined opportunistic monarch observations during the spring migration and breeding period with structured data from the summer Midwestern breeding grounds. Our model revealed a nonstationary relationship between weather conditions and local monarch abundance during the spring, driven by spatially varying vegetation and temperature conditions. Data for widespread and migratory species are often fragmented across multiple monitoring programs, potentially requiring the use of both structured and unstructured data sources to obtain complete geographic coverage. Our integrated model can estimate population abundance at broad spatiotemporal extents despite structured data gaps during the annual cycle by leveraging opportunistic data.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
null (Ed.)Declines in the abundance and diversity of insects pose a substantial threat to terrestrial ecosystems worldwide. Yet, identifying the causes of these declines has proved difficult, even for well-studied species like monarch butterflies, whose eastern North American population has decreased markedly over the last three decades. Three hypotheses have been proposed to explain the changes observed in the eastern monarch population: loss of milkweed host plants from increased herbicide use, mortality during autumn migration and/or early-winter resettlement and changes in breeding-season climate. Here, we use a hierarchical modelling approach, combining data from >18,000 systematic surveys to evaluate support for each of these hypotheses over a 25-yr period. Between 2004 and 2018, breeding-season weather was nearly seven times more important than other factors in explaining variation in summer population size, which was positively associated with the size of the subsequent overwintering population. Although data limitations prevent definitive evaluation of the factors governing population size between 1994 and 2003 (the period of the steepest monarch decline coinciding with a widespread increase in herbicide use), breeding-season weather was similarly identified as an important driver of monarch population size. If observed changes in spring and summer climate continue, portions of the current breeding range may become inhospitable for monarchs. Our results highlight the increasingly important contribution of a changing climate to insect declines.more » « less
-
null (Ed.)Integrated models combine multiple data types within a unified analysis to estimate species abundance and covariate effects. By sharing biological parameters, integrated models improve the accuracy and precision of estimates compared to separate analyses of individual data sets. We developed an integrated point process model to combine presence-only and distance sampling data for estimation of spatially explicit abundance patterns. Simulations across a range of parameter values demonstrate that our model can recover estimates of biological covariates, but parameter accuracy and precision varied with the quantity of each data type. We applied our model to a case study of black-backed jackals in the Masai Mara National Reserve, Kenya, to examine effects of spatially varying covariates on jackal abundance patterns. The model revealed that jackals were positively affected by anthropogenic disturbance on the landscape, with highest abundance estimated along the Reserve border near human activity. We found minimal effects of landscape cover, lion density, and distance to water source, suggesting that human use of the Reserve may be the biggest driver of jackal abundance patterns. Our integrated model expands the scope of ecological inference by taking advantage of widely available presence-only data, while simultaneously leveraging richer, but typically limited, distance sampling data.more » « less
-
Abstract Effective conservation requires understanding species’ abundance patterns and demographic rates across space and time. Ideally, such knowledge should be available for whole communities because variation in species’ dynamics can elucidate factors leading to biodiversity losses. However, collecting data to simultaneously estimate abundance and demographic rates of communities of species is often prohibitively time intensive and expensive. We developed a multispecies dynamic
N ‐occupancy model to estimate unbiased, community‐wide relative abundance and demographic rates. In this model, detection–nondetection data (e.g., repeated presence–absence surveys) are used to estimate species‐ and community‐level parameters and the effects of environmental factors. To validate our model, we conducted a simulation study to determine how and when such an approach can be valuable and found that our multispecies model outperformed comparable single‐species models in estimating abundance and demographic rates in many cases. Using data from a network of camera traps across tropical equatorial Africa, we then used our model to evaluate the statuses and trends of a forest‐dwelling antelope community. We estimated relative abundance, rates of recruitment (i.e., reproduction and immigration), and apparent survival probabilities for each species’ local population. The antelope community was fairly stable (although 17% of populations [species–park combinations] declined over the study period). Variation in apparent survival was linked more closely to differences among national parks than to individual species’ life histories. The multispecies dynamicN ‐occupancy model requires only detection–nondetection data to evaluate the population dynamics of multiple sympatric species and can thus be a valuable tool for examining the reasons behind recent biodiversity loss. -
Abstract Together climate and land‐use change play a crucial role in determining species distribution and abundance, but measuring the simultaneous impacts of these processes on current and future population trajectories is challenging due to time lags, interactive effects and data limitations. Most approaches that relate multiple global change drivers to population changes have been based on occurrence or count data alone.
We leveraged three long‐term (1995–2019) datasets to develop a coupled integrated population model‐Bayesian population viability analysis (IPM‐BPVA) to project future survival and reproductive success for common loons
Gavia immer in northern Wisconsin, USA, by explicitly linking vital rates to changes in climate and land use.The winter North Atlantic Oscillation (NAO), a broad‐scale climate index, immediately preceding the breeding season and annual changes in developed land cover within breeding areas both had strongly negative influences on adult survival. Local summer rainfall was negatively related to fecundity, though this relationship was mediated by a lagged interaction with the winter NAO, suggesting a compensatory population‐level response to climate variability.
We compared population viability under 12 future scenarios of annual land‐use change, precipitation and NAO conditions. Under all scenarios, the loon population was expected to decline, yet the steepest declines were projected under positive NAO trends, as anticipated with ongoing climate change. Thus, loons breeding in the northern United States are likely to remain affected by climatic processes occurring thousands of miles away in the North Atlantic during the non‐breeding period of the annual cycle.
Our results reveal that climate and land‐use changes are differentially contributing to loon population declines along the southern edge of their breeding range and will continue to do so despite natural compensatory responses. We also demonstrate that concurrent analysis of multiple data types facilitates deeper understanding of the ecological implications of anthropogenic‐induced change occurring at multiple spatial scales. Our modelling approach can be used to project demographic responses of populations to varying environmental conditions while accounting for multiple sources of uncertainty, an increasingly pressing need in the face of unprecedented global change.