skip to main content

Search for: All records

Creators/Authors contains: "Farrior, Caroline E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Morin, Xavier (Ed.)
  2. Understanding tropical forest dynamics and planning for their sustainable management require efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing information on tropical tree life histories, our predictive understanding is no longer limited by species data but by the ability of existing models to make use of it. Using a demographic forest model, we show that the basal area and compositional changes during forest succession in a neotropical forest can be accurately predicted by representing tropical tree diversity (hundreds of species) with only five functional groups spanning two essential trade-offs—the growth-survival and stature-recruitment trade-offs. This data-driven modeling framework substantially improves our ability to predict consequences of anthropogenic impacts on tropical forests.
  3. Summary

    The classical theory of stomatal optimization stipulates that stomata should act to maximize photosynthesis while minimizing transpiration. This theory, despite its remarkable success in reproducing empirical patterns, does not account for the fact that the available water to plants is dynamically regulated by plants themselves, and that plants compete for water in most locations.

    Here, we develop an alternative theory in which plants maximize the expected carbon gain under stochastic rainfall in a competitive environment. We further incorporate xylem hydraulic limitation as an additional constraint to transpiration and evaluate its impacts on stomatal optimization by incorporating the direct carbon cost of xylem recovery and the opportunity cost of reduced future photosynthesis as a result of irrecoverable xylem damage.

    We predict stomatal behaviour to be more conservative with a higher cost induced by xylem damage. By varying the unit carbon cost and extent of xylem recovery, characterizing the direct and opportunity cost of xylem damage, respectively, our model can reproduce several key patterns of stomatal‐hydraulic trait covariations.

    By addressing the key elements of water limitation in plant gas exchange simultaneously, including plants’ self‐regulation of water availability, competition for water and hydraulic risk, our study provides a comprehensive theoretical basis for understanding stomatalmore »behaviour.

    « less
  4. Abstract

    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics inESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real‐world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first‐generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter‐disciplinary communication.