skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Farzam, Amirhossein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transformer models have revolutionized machine learning, yet the underpinnings behind their success are only beginning to be understood. In this work, we analyze transformers through the geometry of attention maps, treating them as weighted graphs and focusing on Ricci curvature, a metric linked to spectral properties and system robustness. We prove that lower Ricci curvature, indicating lower system robustness, leads to faster convergence of gradient descent during training. We also show that a higher frequency of positive curvature values enhances robustness, revealing a trade-off between performance and robustness. Building on this, we propose a regularization method to adjust the curvature distribution and provide experimental results supporting our theoretical predictions while offering insights into ways to improve transformer training and robustness. The geometric perspective provided in our paper offers a versatile framework for both understanding and improving the behavior of transformers. 
    more » « less
    Free, publicly-accessible full text available February 25, 2027
  2. Representation learning in high-dimensional spaces faces significant robustness challenges with noisy inputs, particularly with heavy-tailed noise. Arguing that topological data analysis (TDA) offers a solution, we leverage TDA to enhance representation stability in neural networks. Our theoretical analysis establishes conditions under which incorporating topological summaries improves robustness to input noise, especially for heavy-tailed distributions. Extending these results to representation-balancing methods used in causal inference, we propose the *Topology-Aware Treatment Effect Estimation* (TATEE) framework, through which we demonstrate how topological awareness can lead to learning more robust representations. A key advantage of this approach is that it requires no ground-truth or validation data, making it suitable for observational settings common in causal inference. The method remains computationally efficient with overhead scaling linearly with data size while staying constant in input dimension. Through extensive experiments with -stable noise distributions, we validate our theoretical results, demonstrating that TATEE consistently outperforms existing methods across noise regimes. This work extends stability properties of topological summaries to representation learning via a tractable framework scalable for high-dimensional inputs, providing insights into how it can enhance robustness, with applications extending to domains facing challenges with noisy data, such as causal inference. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026